
有图有真相 Matlab实现基于SSA-CNN-LSTM-MHA麻雀算法(SSA)优化卷积长短期记忆神经网络(CNN-LSTM)融合多头注意力机制进行多变量回归预测(代码已调试成功,可一键运行,每一行
本文介绍了一个基于SSA-CNN-LSTM-MHA混合模型的多元回归预测MATLAB实现方案。该方案采用麻雀算法(SSA)优化卷积神经网络(CNN)和长短期记忆网络(LSTM)的超参数,并融合多头注意力机制(MHA)提升模型性能。主要特点包括: 完整流程:包含数据生成、序列构造、SSA优化、模型训练、预测评估全流程 交互控制:提供参数设置界面和运行控制面板,支持暂停/继续/绘图操作 模型结构:结合CNN特征提取、LSTM时序建模和注意力机制 评估体系:提供8种评估图形和9项量化指标,包括MAE、RMSE、R
开源力量:GitCode+昇腾NPU 部署Mistral-7B-Instruct-v0.2模型的技术探索与经验总结
本文详细记录了在国产昇腾NPU平台上部署Mistral-7B-Instruct-v0.2大语言模型的完整技术实践。作者通过GitCode平台提供的免费昇腾910B NPU云资源,成功构建了适配环境,完成了模型下载、加载和推理测试全流程。技术验证表明,昇腾NPU在FP16精度下能够以约18 tokens/s的稳定吞吐量运行7B级别模型,显存占用约15GB,性能表现可靠且任务差异小。这一实践不仅验证了国产AI芯片的实际推理能力,更展示了"零硬件成本"体验国产算力的可行性,为开发者提供了一条从"想试试"到"跑起来




