摘要
齐次坐标系是一种在计算机图形学和3D游戏开发中广泛使用的数学工具。它通过在普通坐标(x, y, z)的基础上增加一个“魔法能量”分量w,形成(x, y, z, w)的表示形式。这种扩展使得齐次坐标能够统一处理平移、旋转、缩放和投影等多种变换,只需通过4x4矩阵即可完成。齐次坐标的核心优势在于其统一性和便捷性,能够简化复杂的3D变换操作,并支持级联变换。在游戏中,齐次坐标被广泛应用于物体变换、摄像机视图、骨骼动画和光照计算等场景。通过齐次坐标,开发者可以更高效地实现3D世界的各种动态效果。
一、什么是齐次坐标系?(故事+比喻)
1. 故事开头:魔法背包的秘密
想象你是一个3D游戏角色,背着一个魔法背包。你在世界里走动、旋转、缩放。
普通的背包只能装“位置”(x, y, z),但魔法背包还能装“魔法能量”(w)!
- 普通坐标:只记录(x, y, z)
- 魔法背包(齐次坐标):记录(x, y, z, w)
这个“w”看起来神秘,其实是让你能用同一种魔法(矩阵乘法),同时实现平移、旋转、缩放、投影等各种变换!
2. 比喻:万能遥控器
- 普通遥控器(3x3矩阵)只能控制电视的“音量、频道”(旋转、缩放)。
- 齐次坐标的遥控器(4x4矩阵)还能一键“移动电视”(平移)!
二、齐次坐标的原理(动画想象+公式)
1. 动画想象
- 你在3D空间里,想让物体“旋转+缩放+平移”。
- 普通3x3矩阵只能做“旋转+缩放”,不能直接做平移。
- 加上“w”分量,变成4维(x, y, z, w),用4x4矩阵,就能一口气做所有变换!
2. 公式
-
普通3D点:
(x, y, z) -
齐次坐标:
(x, y, z, w)- 通常w=1(点),w=0(方向/向量)
-
变换公式:
| x' | | a b c tx | | x | | y' | = | d e f ty | * | y | | z' | | g h i tz | | z | | w' | | 0 0 0 1 | | w |
其中(tx, ty, tz)就是平移量!
-
投影/归一化:
变换后如果w’≠1,最终坐标要除以w’,即(x’/w’, y’/w’, z’/w’)。
三、为什么要用齐次坐标?
- 统一所有变换:旋转、缩放、平移、投影都能用一个4x4矩阵搞定。
- 方便级联变换:多个变换可以直接矩阵相乘,顺序叠加。
- 实现投影:比如3D到2D的透视投影,w分量很关键。
四、游戏中的实际应用
1. 物体的世界变换
- 游戏中每个物体都有“变换矩阵”(Transform),用4x4矩阵表示。
- 物体的本地坐标通过齐次坐标和变换矩阵,变成世界坐标。
2. 摄像机视图变换
- 摄像机的View矩阵、投影矩阵,都是4x4齐次矩阵。
- 3D点通过这些矩阵变换,最终投影到屏幕上。
3. 骨骼动画
- 骨骼的每个关节变换都用4x4矩阵,方便叠加。
4. 光照与法线变换
- 法线、方向向量用w=0,点用w=1,区分“只旋转不平移”和“旋转+平移”。
五、代码演示
Unity(C#)举例
// 把本地坐标转到世界坐标
Vector3 localPos = new Vector3(1, 2, 3);
Matrix4x4 worldMatrix = transform.localToWorldMatrix;
Vector3 worldPos = worldMatrix.MultiplyPoint(localPos); // w=1
// 只变换方向(不平移)
Vector3 localDir = new Vector3(1, 0, 0);
Vector3 worldDir = worldMatrix.MultiplyVector(localDir); // w=0
Godot(GDScript)举例
var local_pos = Vector3(1, 2, 3)
var world_pos = global_transform.xform(local_pos) # 齐次坐标变换
Unreal(C++)举例
FVector LocalPos(1, 2, 3);
FTransform Transform = GetActorTransform();
FVector WorldPos = Transform.TransformPosition(LocalPos); // 齐次坐标变换
六、形象总结
- 齐次坐标就像给每个点加了“魔法能量”,让所有3D变换都能用同一种魔法(4x4矩阵)实现。
- 在游戏开发中,所有3D变换、摄像机、投影、骨骼动画都离不开齐次坐标。
- 只要记住:点是(x, y, z, 1),方向是(x, y, z, 0),你就能玩转3D世界的所有变换!
“齐次坐标在齐次坐标系中是如何表示的?”
我们来用形象比喻+公式+举例来解释。
1. 形象比喻
想象你在二维世界(平面)里,普通点是(x, y)。
现在你要进入“齐次世界”,就像给每个点加了一个“魔法能量槽”w。
- 普通坐标系:点是(x, y)
- 齐次坐标系:点是(x, y, w)
在三维空间,普通点是(x, y, z),齐次坐标就是(x, y, z, w)。
2. 公式表示
二维情况
- 普通坐标:
(x, y) - 齐次坐标:
(x, y, w)
其中w≠0
还原到普通坐标:
(x, y) = (X / w, Y / w)
三维情况
- 普通坐标:
(x, y, z) - 齐次坐标:
(x, y, z, w)
其中w≠0
还原到普通坐标:
(x, y, z) = (X / w, Y / w, Z / w)
3. 举例说明
例1:三维点
- 普通点A:(2, 3, 4)
- 齐次坐标表示:A’ = (2, 3, 4, 1)
例2:同一个点的不同齐次表示
- (2, 3, 4, 1)
- (4, 6, 8, 2)
- (10, 15, 20, 5)
这些齐次坐标都表示同一个三维点,因为
(2/1, 3/1, 4/1) = (4/2, 6/2, 8/2) = (10/5, 15/5, 20/5) = (2, 3, 4)
例3:方向向量
- 方向向量(1, 0, 0)在齐次坐标系中表示为(1, 0, 0, 0)
- 这样做的好处是,经过4x4变换矩阵时,不会受到平移影响(只旋转/缩放)
4. 在齐次坐标系中的表示方法总结
- 点:用(x, y, z, 1)表示
- 方向/向量:用(x, y, z, 0)表示
- 同一几何点:可以用任意比例的齐次坐标表示,只要w≠0
5. 代码举例(Unity)
Vector3 point = new Vector3(2, 3, 4);
// 齐次坐标 (2, 3, 4, 1)
Vector4 homogeneousPoint = new Vector4(point.x, point.y, point.z, 1);
// 还原
Vector3 restored = new Vector3(homogeneousPoint.x / homogeneousPoint.w,
homogeneousPoint.y / homogeneousPoint.w,
homogeneousPoint.z / homogeneousPoint.w);
6. 结论
齐次坐标在齐次坐标系中就是多加一维(w),用(x, y, z, w)来表示。
- 点的w=1,方向的w=0。
- 只要w≠0,(x, y, z, w)和(kx, ky, kz, kw)表示同一个点。
这样,所有3D变换都能用4x4矩阵统一处理,非常方便!