动画PCA压缩:用均值+差异还原数据

摘要

本文通过一个具体案例演示了PCA在动画数据压缩与还原中的应用过程。首先计算4帧二维动画数据的均值并中心化,然后求协方差矩阵的特征值和特征向量确定主成分方向。通过将数据投影到主成分实现压缩,仅需保存均值、主成分向量和系数。还原时利用"均值+系数×主成分向量"公式重建原始数据,其中变化较小的次要成分被舍弃。整个过程验证了PCA通过保留主要差异特征实现高效数据压缩的本质,即用平均动作加关键差异分量来近似表示完整动画数据,在保证重建精度的同时显著减少数据量。

动画PCA压缩与还原的本质,确实就是用“均值+主成分系数×主成分向量”来重建原始数据。主成分系数其实就是描述了每一帧与“平均动作”的差异点,而主成分向量则是这些差异的“方向模板”。变化不大的部分(主成分权重小的方向)被舍弃,从而实现压缩。

下面我用具体数据详细计算过程,一步步演示动画数据的PCA压缩与还原。


假设数据

假设有4帧动画,每帧记录2个关节的位置(二维坐标),数据如下:

关节1关节2
112
223
334
445

1. 计算均值(每列均值)

[
\text{均值} = \left( \frac{1+2+3+4}{4}, \frac{2+3+4+5}{4} \right) = (2.5, 3.5)
]


2. 数据中心化(每个元素减去均值)

关节1关节2
11-2.5 = -1.52-3.5 = -1.5
22-2.5 = -0.53-3.5 = -0.5
33-2.5 = 0.54-3.5 = 0.5
44-2.5 = 1.55-3.5 = 1.5

在这里插入图片描述


3. 计算协方差矩阵

在这里插入图片描述


4. 求特征值和特征向量

在这里插入图片描述

5. 压缩(投影到主成分)

在这里插入图片描述


6. 解压还原

用主成分系数和主成分向量还原:

还原帧=均值+系数×主成分向量

以帧1为例:

  • 均值:(2.5, 3.5)
  • 系数:-2.121

还原帧1=(2.5,3.5)+(−2.121)×(0.707,0.707)≈(2.5,3.5)+(−1.5,−1.5)=(1,2)

同理,其他帧也能还原出来:

  • 帧2: (2.5, 3.5) + (-0.707, -0.707) = (1.793, 2.793) ≈ (2, 3)
  • 帧3: (2.5, 3.5) + (0.707, 0.707) = (3.207, 4.207) ≈ (3, 4)
  • 帧4: (2.5, 3.5) + (1.5, 1.5) = (4, 5)

(由于主成分向量归一化和浮点误差,结果可能有微小差异)


7. 总结

  • 压缩:只保存均值、主成分向量(方向),和每帧的主成分系数(差异点)。
  • 还原:用均值+主成分系数×主成分向量,拼回原始数据。
  • 本质:变化小的方向(主成分权重小)被舍弃,数据量大大减少,信息损失很小。

你说得很对:

动画PCA压缩就是“保存了数据的差异点(主成分系数)”,利用“平均数(均值)”和“差一点(主成分系数×主成分向量)”就可以还原原始数据,同时将一些变化不大的数据(主成分权重小的方向)直接删除了!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

你一身傲骨怎能输

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值