空间转录组学(Spatial Transcriptomics)

01、空间转录组技术的发展
近年来单细胞转录组测序技术的应用大大拓宽了人们的视野,使人们能够深入了解组织中细胞的构成的多样性和基因表达状态。众所周知,基因表达具有时间和空间的特异性,通过对不同时间点的样本取材,使用单细胞转录组测序技术能够解析时间维度上细胞类型和基因表达的变化过程。

图1. 早期胚胎发育中基因表达的时间特异性【1】

然而单细胞测序实验的前提是组织必须通过机械分离或酶解消化成单细胞悬液,此过程不可避免的丢失了组织中细胞所处的原始位置信息,也导致了细胞间的通讯网络被打破,这使我们难以获得组织中不同区域的细胞构成和基因表达状态,以及不同功能区之间的基因差异表达等信息。

图2. 单细胞转录组测序技术和空间转录组技术【2】

单细胞转录组测序技术可以说是融合了高通量组学技术和传统的单细胞研究手段,即解决了通量和分辨率的问题。空间转录组技术(spatial transcriptomics)则需要利用常规的原位技术和组学技术两方面的优势。

图3. 单细胞测序技术解决了通量和分辨率的问题

现有的空间转录组技术主要分为两类:一类是基于杂交和成像的方法,例如smFISH,Branched FISH;另一类是基于测序的方法,包括TIVA,ISS,FISSEQ等。smFISH,Branched FISH等靶向方法在分析的细胞数量和检测靶点的数量上都受到限制。而上述基于测序的方法虽然是可作为非靶向的筛选手段,但能够分析的细胞数量仍处在较低水平。

图4. 空间转录组技术的比较【3】

今年一项大受关注的研究成果,来自于中国科学院上海生命科学研究院,该研究利用一种称为Geo-seq的技术,整合激光显微切割技术和微量RNA-seq技术,重建了小鼠不同发育时期的三维空间转录组图谱【4】。其实该技术的第一篇文章发表于2016年,绘制了小鼠早期胚胎原肠运动中期(E7.0 late mid-streak stage)精细的三维分子图谱,揭示了小鼠细胞谱系建立过程中的空间转录组特征、转录因子和信号通路调控网络【5】。然而该技术的工作量十分巨大,首先需要将胚胎进行连续切片,之后再利用LCM将每一个切片分成4~6个区域,每个区域的微量组织再分别进行RNA抽提,微量RNA扩增、建库和测序的流程【6】。

图5. Geo-seq技术的原理

2016年,另一项发表在Science上的工作,则利用基因芯片技术将位置信息保留在芯片上,再利用二代测序技术对组织中的RNA进行测序,从而生成了组织切片上完整的基因表达图像【7】。

图6. 空间转录组测序技术的原理

该论文的通讯作者Joakim Lundeberg也是瑞典Spatial Transcriptomics公司的联合创始人之一,2018年底10X Genomics宣布收购Spatial Transcriptomics,并于2019年发布Visium空间基因表达解决方案(Visium Spatial Gene Expression Solution)。

02、10X Genomics Visium空间转录组技术
1、技术原理

将冰冻组织切片放置在10X Genomics Visium芯片的的捕获区域内,进行HE染色和成像后,对组织切片进行透化处理,细胞内的mRNA释放,从而被芯片上带有oligo-dT的探针捕获,并且每个探针都带有特异的地址序列,然后以mRNA为模版进行cDNA合成,构建文库后再通过测序,获得基因表达信息的同时,每一条测序reads因带有地址序列,从而能够获得基因表达的位置信息。

图7. 10X Genomics Visium空间转录组技术的原理

10X Genomics Visium芯片包含两种芯片,分别为组织优化芯片和基因表达芯片,组织优化芯片用来摸索组织透化的条件,基因表达芯片用来进行正式样本的空间转录组实验。其中基因表达芯片上有4个捕获区域,每个区域大小为6.5mm *6.5mm,每个捕获区域中有5000个带有特异地址序列的探针簇,称为barcoded spots,每个spot直径为55um,包含数百万个用于捕获的oligo探针序列,相邻两个spot点的中心距离为100um。探针序列的结构为:测序引物结合序列,16nt的地址序列,12nt的UMI序列以及30nt的oligo-dT序列。

图8. 10X Genomics Visium空间转录组芯片的结构

2、实验流程

(1)新鲜组织样本进行异戊烷固定、液氮速冻和OCT包埋;

(2)用冷冻切片机进行切片;

图9. 样本准备和切片

(3)准备5~10张切片提取RNA并进行质量评估(要求RIN值>7.0);

(4)透化条件优化。组织优化玻片包含8个捕获区域,其中6个区域分别设置6个不同的透化时间,另外两个区域1个为不加透化剂的阴性对照,另1个为阳性对照,不放组织切片,而是直接加入RNA。其实验流程为:固定→染色→明场拍照→组织透化→荧光cDNA合成→组织移除→荧光扫描,根据荧光强度判断最优的透化时间。

(5)正式实验。正式实验用的基因表达芯片上有4个捕获区域,其实验流程为:染色以及明场拍照→组织透化(用上述优化好的透化时间进行)及cDNA合成→文库构建→高通量测序。

图10. 10X Genomics Visium空间转录组技术的流程

3、应用方向

空间转录组的应用方向包含了肿瘤学,免疫学,发育生物学,神经科学及病理学等各个方向。

图11. 空间转录组技术的应用方向

4、数据分析

空间转录组数据分析的核心是根据每个芯片上每个spot的基因表达信息进行聚类,然后将spot根据地址序列放回到组织的图像上,同时可以对每个gene在组织上表达的空间位置进行定位。

图12. Spot聚类和图像整合

图13. 基因表达的空间热图【8】

5、空间转录组和单细胞转录组数据的整合

10X Genomics Visium空间转录组技术目前还达不到单细胞分辨率,而单细胞转录组数据则能够起到一定的补充作用,将两者的数据进行锚定和整合,使我们能够获得目标组织的三维空间转录组图谱。

图14. 空间转录组和单细胞转录组数据的整合

欢迎关注微信:生信小博士
在这里插入图片描述
加油~

空间转录组Spatial Transcriptomics)是一种分析技术,它将基因表达数据与细胞的位置信息结合在一起,用于研究组织内基因活性的空间异质性。在R语言中,有许多库和工具支持空间转录组的数据处理和分析: 1. **Seurat**:这是一个非常流行的单细胞RNA测序分析套件,虽然不是专门针对空间转录组,但它也包含了对spatial RNA-seq数据的支持,如`stereoSingleCellExperiment`格式。 2. **spatialSeurat**:这个库是Seurat的一个扩展,专为处理和分析空间转录组数据设计,提供了一整套的功能,包括数据预处理、细胞分群以及空间相关性的分析。 3. **scater`** 和 `SCTK`:这两个库可以作为Seurat工作流的一部分,帮助处理转录组数据,它们也可用于空间转录组数据的初步统计分析。 4. **scanpy**:另一个Python库的R接口,虽然主要用于单一细胞转录组分析,但它的一些功能也可以适用于空间转录组的数据集成。 5. **spatialTMM** 或 **DESeq2 spatial**:这些都是基于传统差异表达分析的包,但添加了空间信息的考虑,例如局部相似性和邻域效应。 6. **tissuenet**:这是一款专门用于空间转录组分析的软件,提供了网络分析工具和可视化功能。 要开始使用R语言处理空间转录组数据,你需要安装并熟悉这些库,然后按照文档和教程习如何加载数据、标准化、分析差异表达并生成空间相关的可视化结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值