人工智能-损失函数-优化算法:梯度下降【SGD-->SGDM(梯度动量)-->AdaGrad(动态学习率)-->RMSProp(动态学习率)-->Adam(动态学习率+梯度动量)】、梯度下降优化技巧

本文介绍了深度学习中的梯度下降优化算法,包括批量梯度下降(BGD)、随机梯度下降(SGD)、小批量梯度下降(MBGD)、SGD带动量(SGDM)、AdaGrad、RMSProp以及Adam算法。讨论了各种算法的优缺点,如SGD的速度优势和可能的噪声问题,以及AdaGrad和RMSProp对学习率的动态调整。此外,还提到了优化技巧如学习率调整和梯度裁剪。
摘要由CSDN通过智能技术生成

一、梯度下降算法

  • 优化算法,入门级必从SGD学起,老司机则会告诉你更好的还有AdaGrad/AdaDelta,或者直接无脑用Adam。
  • 深度学习优化算法经历了 SGD -> SGDM -> AdaGrad -> AdaDelta -> RMSProp ->Adam -> Nadam 这样的发展历程。

在这里插入图片描述

1、BGD(Batch Gradient Descent,批量梯度下降法)

每次迭代都需要把所有样本都送入,这样的好处是每次迭代都顾及了全部的样本,目的是全局最优化,但是有可能达到局部最优。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值