Loss(五)-2018:Large Margin Cosine Loss(LMCL/CosFace)【SphereFace只对W归一化;CosFace对W、X都归一,在余弦空间中最大化分类界限】

本文详细介绍了CosFace损失函数,它是SphereFace的优化版,通过对权重和特征向量同时归一化,以及在余弦空间中增加分类边界,提升面部识别的性能。对比了Softmax、Normalized Softmax Loss、SphereFace和CosFace,指出CosFace通过在余弦空间定义决策边界,提供更好的鲁棒性和区分度。
摘要由CSDN通过智能技术生成

《原始论文:CosFace: Large Margin Cosine Loss for Deep Face Recognition》
《原始论文:Additive Margin Softmax for Face Verification》

第二篇论文官方代码:GitHub:https://github.com/happynear/AMSoftmax

关于SphereFace的优化,同期出了两篇文章:

  • 一个是Tencent AI Lab发表在cvpr2018的 Large Margin Cosine Loss(CosFace);
  • 另外一个是happynear大神提出的AM-Softmax Loss。

二者核心原理一致,只是在论文写作中的其他侧重点有所不同。

一、Large Margin Cosine Loss(LMCL)

SphereFace中只对 W W W 进行归一化,CosFace中对 W W W X X X 均进行了归一化,不过为了使得训练能收敛,增加了一个参数 s = 30 s=30 s=30

1、Softmax Loss

首先从余弦的角度重新思考softmax损失。

softmax损失通过最大化地面真相类的后验概率将特征与不同类分开。给定一个输入特征向量 x i x_i xi 及其对应的标签 y i y_i yi,softmax损失可以表述为:
在这里插入图片描述
其中:

  • p i p_i pi 表示被正确分类的后验概率。
  • N N N 是训练样本的数量,
  • C C C:类别的数量。
  • f j f_j fj:通常表示为一个完全连接层的激活,该层具有权重向量 W j W_j Wj 和偏差 B j B_j Bj。为了简单起见,修正了偏差 B j = 0 B_j=0 Bj=0,结果 f j f_j fj由下式给出: f j = W j T x = ∣ ∣ W j ∣ ∣ ⋅ ∣ ∣ x ∣ ∣ ⋅ c o s θ f_j = W_j^Tx=∣∣W_j ∣∣·∣∣x∣∣·cosθ fj=WjTx=∣∣Wj∣∣∣∣x∣∣cosθ 。其中 θ j θ_j θj W j W_j Wj x x x 之间的角度。这个公式表明向量的范数角度都对后验概率有贡献

2、Large Margin Softmax Loss

缩小每个类别的可行角度(Feasible angle)范围,在这些类别之间产生角度Magin。
L i = − log ⁡ ( e ∥ w y i ∥ ∥ x i ∥ ψ ( θ y i ) e ∥ w y i ∥ ∥ x i ∥ ψ ( θ y i ) + ∑ j e ∥ w j ≠ y i ∥ ∥ x i ∥ cos ⁡ ( θ j ) ) (4) L_i = - \log \left (\cfrac{e^{\lVert \mathbf{w}_{y_i} \rVert \lVert \mathbf{x}_i \rVert \psi (\theta_{y_i})}}{e^{\lVert \mathbf{w}_{y_i} \rVert \lVert \mathbf{x}_i \rVert \psi (\theta_{y_i})} + \sum_{j} e^{\lVert \mathbf{w}_{j \neq y_i} \rVert \lVert \mathbf{x}_i \rVert \cos(\theta_j)}} \right) \tag4 Li=log(ewyixiψ(θyi)+jewj=yixicos(θj)ewyixiψ(θyi))(4)

3、SphereFace(Angular Softmax Loss)

SphereFace的优化:为了开发有效的特征学习, W W W 的范数必须是不变的。 为此,通过 L 2 L2 L2 归一化来固定 ∣ ∣ W j ∣ ∣ = 1 ||W_j|| = 1 ∣∣Wj∣∣=1
L ang = 1 N ∑ i − log ⁡ ( e ∥ x i ∥ ψ ( θ y i , i ) e ∥ x i ∥ ψ ( θ y i , i ) + ∑ j ≠ y i e ∥ x i ∥ cos ⁡ ( θ j , i ) ) { {L}_{\text{ang}}}=\cfrac{1}{N}\sum\limits_{i}{-\log (\cfrac{ { {e}^{\left\| { {x}_{i}} \right\|\psi ({ {\theta }_{y_i,i}})}}}{ { {e}^{\left\| { {x}_{i}} \right\|\psi ({ {\theta }_{y_i,i}})}}+\sum\nolimits_{j\ne y_i}{ { {e}^{\left\| { {x}_{i}} \right\|\cos ({ {\theta }_{j}},i)}}}}}) Lang=N1ilog(exiψ(θyi,i)+j=yiexicos

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值