数学分析(六)-微分中值定理及其应用7:方程的近似解

§ 7 方程的近似解
在实际应用中, 常常求方程
f ( x ) = 0 f(x)=0 f(x)=0
的解. 而方程求解的方法主要有两种: 解析法和数值法. 解析法也称为公式法,
得到的解是精确的,
比如一元二次方程的求解公式.然而并不是所有的方程的根都能通过这种方法而求得.法国著名数学家伽罗瓦
(Galois) 在 19 世纪就证明了形如
y = a n x n + a n − 1 x n − 1 + ⋯ + a 0 = 0 ( a n ≠ 0 ) y=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}=0 \quad\left(a_{n} \neq 0\right) y=anxn+an1xn1++a0=0(an=0)
的代数方程, 当 n ⩾ 5 n \geqslant 5 n5 时,一般不存在求解公式. 因此对于一般方程,
我们必须寻求其他的求解方法.
下面我们介绍一种数值解法—牛顿切线法.
f f f [ a , b ] [a, b] [a,b] 上的二阶可导函数, 满足
f ′ ( x ) ⋅ f ′ ′ ( x ) ≠ 0 , f ( a ) ⋅ f ( b ) < 0. f^{\prime}(x) \cdot f^{\prime \prime}(x) \neq 0, \quad f(a) \cdot f(b)<0 . f(x)f′′(x)=0,f(a)f(b)<0.
牛顿切线法的基本思想是构造一收敛点列 { x n } \left\{x_{n}\right\} { xn}, 使其极限
lim ⁡ n → ∞ x n = ξ \lim \limits_{n \rightarrow \infty} x_{n}=\xi nlimxn=ξ 恰好是方程 (1) 的解.
因此当 n n n 充分大时, x n x_{n} xn 可作为 ξ \xi ξ
的近似值.下面分四种情形进行讨论.
(1) 设 f ′ ( x ) < 0 , f ′ ′ ( x ) > 0 f^{\prime}(x)<0, f^{\prime \prime}(x)>0 f(x)<0,f′′(x)>0. 从而有
f ( a ) > 0 , f ( b ) < 0 f(a)>0, f(b)<0 f(a)>0,f(b)<0, 并设 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0. 令
x 0 = a , x n = x n − 1 − f ( x n − 1 ) f ′ ( x n − 1 ) , n = 1 , 2 , ⋯   . x_{0}=a, x_{n}=x_{n-1}-\frac{f\left(x_{n-1}\right)}{f^{\prime}\left(x_{n-1}\right)}, n=1,2, \cdots . x0=a,xn=xn1f(xn1)f(xn1),n=1,2,.
因为 f ′ ′ ( x ) > 0 f^{\prime \prime}(x)>0 f′′(x)>0, 所以 f f f [ a , b ] [a, b] [a,b]
上的严格凸函数,由定理 6.14
f ( x ) > f ( a ) + f ′ ( a ) ( x − a ) , x ∈ ( a , b ] . f(x)>f(a)+f^{\prime}(a)(x-a), x \in(a, b] . f(x)>f(a)+f(a)(xa),x(a,b].
x 0 = a x_{0}=a x0=a, 则 y = f ( x ) y=f(x) y=f(x) 在点 a a a 的切线与 x x x 轴的交点为
x 1 = a − f ( a ) f ′ ( a ) = x 0 − f ( x 0 ) f ′ ( x 0 ) . x_{1}=a-\frac{f(a)}{f^{\prime}(a)}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} . x1=af(a)f(a)=x0f(x0)f(x0).
由 (3) 式可知 f ( x 1 ) > 0 f\left(x_{1}\right)>0 f(x1)>0 (见图 6-17(1)).
[ x 1 , b ] \left[x_{1}, b\right] [x1,b] 代替 [ a , b ] [a, b] [a,b] 重复上述步骤可得 y = f ( x ) y=f(x) y=f(x) 在点
x 1 x_{1} x1 的切线与 x x x 轴交点为
x 2 = x 1 − f ( x 1 ) f ′ ( x 1 ) , x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}, x2=x1f(x1)f(x1),
其中 f ( x 2 ) > 0 , a = x 0 < x 1 < x 2 < ξ < b f\left(x_{2}\right)>0, a=x_{0}<x_{1}<x_{2}<\xi<b f(x2)>0,a=x0<x1<x2<ξ<b.
如此继续上述过程可得如 (2) 式确定的点列 { x n } \left\{x_{n}\right\} { xn}. 显然
{ x n } \left\{x_{n}\right\} { xn} 严格递增且有上界, 故可设
lim ⁡ n → ∞ x n = c \lim \limits_{n \rightarrow \infty} x_{n}=c nlimxn=c. 由于 f f f f ′ f^{\prime} f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值