§ 4 正定二次型
在实二次型中,正定二次型占有特殊的地位.作为本章的结束,我们给出它的定义以及常用的判别条件.
定义 4 实二次型 f ( x 1 , x 2 , ⋯ , x n ) f\left(x_{1}, x_{2}, \cdots, x_{n}\right) f(x1,x2,⋯,xn) 称为正定的,
如果对于任意一组不全为零的实数 c 1 , c 2 , ⋯ , c n c_{1}, c_{2}, \cdots, c_{n} c1,c2,⋯,cn, 都有
f ( c 1 , c 2 , ⋯ , c n ) > 0 f\left(c_{1}, c_{2}, \cdots, c_{n}\right)>0 f(c1,c2,⋯,cn)>0.
显然,二次型
f ( x 1 , x 2 , ⋯ , x n ) = x 1 2 + x 2 2 + ⋯ + x n 2 f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} f(x1,x2,⋯,xn)=x12+x22+⋯+xn2
是正定的, 因为只有在 c 1 = c 2 = ⋯ = c n = 0 c_{1}=c_{2}=\cdots=c_{n}=0 c1=c2=⋯=cn=0 时,
c 1 2 + c 2 2 + ⋯ + c n 2 c_{1}^{2}+c_{2}^{2}+\cdots+c_{n}^{2} c12+c22+⋯+cn2 才为零.一般地,
读者不难验证,实二次型
f ( x 1 , x 2 , ⋯ , x n ) = d 1 x 1 2 + d 2 x 2 2 + ⋯ + d n x n 2 f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=d_{1} x_{1}^{2}+d_{2} x_{2}^{2}+\cdots+d_{n} x_{n}^{2} f(x1,x2,⋯,xn)=d1x12+d2x22+⋯+dnxn2
是正定的当且仅当 d i > 0 ( i = 1 , 2 , ⋯ , n ) d_{i}>0(i=1,2, \cdots, n) di>0(i=1,2,⋯,n).
设实二次型
f ( x 1 , x 2 , ⋯ , x n ) = ∑ i = 1 n ∑ j = 1 n a i j x i x j , a i j = a j i f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}, \quad a_{i j}=a_{j i} f(x1,x2,⋯,xn)=i=1∑nj=1∑naijxixj,aij=aji
是正定的,经过非退化实线性替换
X = C Y \boldsymbol{X}=\boldsymbol{C} \boldsymbol{Y} X=CY
变成二次型
g ( y 1 , y 2 , ⋯ , y n ) = ∑ i = 1 n ∑ j = 1 n b i j y i y j , b i j = b j i . g\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i j} y_{i} y_{j}, \quad b_{i j}=b_{j i} . g(y1,y2,⋯,yn)=i=1∑nj=1∑nbijyiyj,bij=bji.
我们指出, y 1 , y 2 , ⋯ , y n y_{1}, y_{2}, \cdots, y_{n} y1,y2,⋯,yn 的二次型
g ( y 1 , y 2 , ⋯ , y n ) g\left(y_{1}, y_{2}, \cdots, y_{n}\right) g(y1,y2,⋯,yn) 也是正定的,或者说,
对于任意一组不全为零的实数 k 1 , k 2 , ⋯ , k n k_{1}, k_{2}, \cdots, k_{n} k1,k2,⋯,kn, 都有
g ( k 1 , k 2 , ⋯ , k n ) > 0 g\left(k_{1}, k_{2}, \cdots, k_{n}\right)>0 g(k1,k2,⋯,kn)>0. 事实上, 令
y 1 = k 1 , y 2 = k 2 , ⋯ , y n = k n , y_{1}=k_{1}, \quad y_{2}=k_{2}, \cdots, y_{n}=k_{n}, y1=k1,y2=k2,⋯,yn=kn,
代人 (2) 的右端, 就得 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 对应的一组值.
臂如说是 c 1 , c 2 , ⋯ , c n c_{1}, c_{2}, \cdots, c_{n} c1,c2,⋯,cn, 这就是说
( c 1 c 2 ⋮ c n ) = C ( k 1 k 2 ⋮ k n ) . \left(\begin{array}{c} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{array}\right)=\boldsymbol{C}\left(\begin{array}{c} k_{1} \\ k_{2} \\ \vdots \\ k_{n} \end{array}\right) .
c1c2⋮cn
=C
k1k2⋮kn
.
因为 C \boldsymbol{C} C 可逆,就有
( k 1 k 2 ⋮ k n ) = C − 1 ( c 1 c 2 ⋮ c n ) . \left(\begin{array}{c} k_{1} \\ k_{2} \\ \vdots \\ k_{n} \end{array}\right)=\boldsymbol{C}^{-1}\left(\begin{array}{c} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{array}\right) \text {. }
k1k2⋮kn
=C−1
c1c2⋮cn
.
所以当 k 1 , k 2 , ⋯ , k n k_{1}, k_{2}, \cdots, k_{n} k1,k2,⋯,kn 是一组不全为零的实数时,
c 1 , c 2 , ⋯ , c n c_{1}, c_{2}, \cdots, c_{n} c1,c2,⋯,cn 也是一组不全为零的实数.显然
g ( k 1 , k 2 , ⋯ , k n ) = f ( c 1 , c 2 , ⋯ , c n ) > 0. g\left(k_{1}, k_{2}, \cdots, k_{n}\right)=f\left(c_{1}, c_{2}, \cdots, c_{n}\right)>0 . g(k1,k2,⋯,kn)=f(c1,c2,⋯,cn)>0.
因为二次型 (3) 也可以经过非退化实线性替换
Y = C − 1 X \boldsymbol{Y}=\boldsymbol{C}^{-1} \boldsymbol{X} Y=C−1X
变到二次型 (1), 所以按同样理由, 当 (3) 正定时 (1)
也正定.这就是说,非退化实线性替换保持正定性不变,由此即得
定理 6 n 6 n 6n 元实二次型 f ( x 1 , x 2 , ⋯ , x n ) f\left(x_{1}, x_{2}, \cdots, x_{n}\right) f(x1,x2,⋯,xn)
是正定的充分必要条件是它的正惯性指数等于 n n n.
证明 设二次型 f ( x 1 , x 2 , ⋯ , x n ) f\left(x_{1}, x_{2}, \cdots, x_{n}\right) f(x1,x2,⋯,xn)
经过非退化实线性替换变成标准形
d 1 y 1 2 + d 2 y 2 2 + ⋯ + d n y n 2 . d_{1} y_{1}^{2}+d_{2} y_{2}^{2}+\cdots+d_{n} y_{n}^{2} . d1y12+d2y22+⋯+dnyn2.
上面的讨论表明, f ( x 1 , x 2 , ⋯ , x n ) f\left(x_{1}, x_{2}, \cdots, x_{n}\right) f(x1,x2,⋯,xn) 正定当且仅当
(4) 是正定的,而我们知道,二次型 (4)是正定的当且仅当
d i > 0 ( i = 1 , 2 , ⋯ , n ) d_{i}>0(i=1,2, \cdots, n) di>0(i=1,2,⋯,n), 即正惯性指数为 n n n.
定理 6 说明,正定二次型 f ( x 1 , x 2 , ⋯ , x n ) f\left(x_{1}, x_{2}, \cdots, x_{n}\right) f(x1,x2,⋯,xn)
的规范形为
y 1 2 + y 2 2 + ⋯ + y n 2 . y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2} . y12+y22+⋯+yn2.
定义 5 实对称矩阵 A A A 称为正定的,如果二次型
X ⊤ ˙ A ˙ X \dot{\boldsymbol{X}^{\top}} \dot{\boldsymbol{A}} \boldsymbol{X} X⊤˙A˙X
正定.
因为二次型 (5) 的矩阵是单位矩阵 E E E,
所以一个实对称矩阵是正定的当且仅当它与单位矩阵合同,由此得
推论 正定矩阵的行列式大于零.
证明 设 A \boldsymbol{A} A 是一正定矩阵. 因为 A \boldsymbol{A} A
与单位矩阵合同, 所以有可逆矩阵 C C C, 使
A = C ⊤ E C = C ⊤ C . \boldsymbol{A}=\boldsymbol{C}^{\top} \boldsymbol{E} \boldsymbol{C}=\boldsymbol{C}^{\top} \boldsymbol{C} \text {. } A=C
高等代数(五)-二次型04:正定二次型
最新推荐文章于 2024-07-23 18:37:55 发布