高等代数(九)-欧几里得空间08:西空间介绍

本文介绍了西空间的概念,它是复数域上的欧氏空间,具备内积性质。内容包括西空间的定义、性质、内积运算、长度定义、柯西-布尼亚科夫斯基不等式、正交向量和正交基的讨论,以及与欧氏空间的相似性和差异。此外,还涉及了西矩阵、埃尔米特矩阵及其相关性质,以及在西空间中的线性变换和正交变换等重要概念。
摘要由CSDN通过智能技术生成

§ 8 西空间介绍
欧氏空间是专对实数域上线性空间而讨论的.
西空间实际就是复数域上的欧氏空间.
定义 14 设 V V V 是复数域上的线性空间,在 V V V
上定义了一个二元复函数,称为内积,记作
( α , β ) (\boldsymbol{\alpha}, \boldsymbol{\beta}) (α,β), 它具有以下性质:
1)
( α , β ) = ( β , α ) ‾ (\boldsymbol{\alpha}, \boldsymbol{\beta})=\overline{(\boldsymbol{\beta}, \boldsymbol{\alpha})} (α,β)=(β,α),
这里 ( β , α ) ‾ \overline{(\boldsymbol{\beta}, \boldsymbol{\alpha})} (β,α)
( β , α ) (\boldsymbol{\beta}, \boldsymbol{\alpha}) (β,α) 的共斩复数;
2)
( k α , β ) = k ( α , β ) (k \boldsymbol{\alpha}, \boldsymbol{\beta})=k(\boldsymbol{\alpha}, \boldsymbol{\beta}) (kα,β)=k(α,β);
3)
( α + β , γ ) = ( α , γ ) + ( β , γ ) (\boldsymbol{\alpha}+\boldsymbol{\beta}, \boldsymbol{\gamma})=(\boldsymbol{\alpha}, \boldsymbol{\gamma})+(\boldsymbol{\beta}, \boldsymbol{\gamma}) (α+β,γ)=(α,γ)+(β,γ);
4) ( α , α ) (\boldsymbol{\alpha}, \boldsymbol{\alpha}) (α,α) 是非负实数, 且
( α , α ) = 0 (\boldsymbol{\alpha}, \boldsymbol{\alpha})=0 (α,α)=0 当且仅当 α = 0 \alpha=0 α=0,
其中 α , β , γ \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} α,β,γ
V V V 中任意的向量, k k k 为任意复数,这样的线性空间称为西空间.
例 在线性空间 C n \mathbf{C}^{n} Cn 中,对向量
α = ( a 1 , a 2 , ⋯   , a n ) , β = ( b 1 , b 2 , ⋯   , b n ) \boldsymbol{\alpha}=\left(a_{1}, a_{2}, \cdots, a_{n}\right), \quad \boldsymbol{\beta}=\left(b_{1}, b_{2}, \cdots, b_{n}\right) α=(a1,a2,,an),β=(b1,b2,,bn)
定义内积为
( α , β ) = a 1 b ˉ 1 + a 2 b ˉ 2 + ⋯ + a n b ˉ n . (\boldsymbol{\alpha}, \boldsymbol{\beta})=a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}+\cdots+a_{n} \bar{b}_{n} . (α,β)=a1bˉ1+a2bˉ2++anbˉn.
显然,内积 (1) 满足定义 14 中的条件. 这样, C n \mathbf{C}^{n} Cn
就成为一个西空间.
由于西空间的讨论与欧氏空间的讨论很相似,有一套平行的理论,因此这里只简单地列出重要的结论,
而不详细论证.
首先由内积的定义可得到
1)
( α , k β ) = k ˉ ( α , β ) (\boldsymbol{\alpha}, k \boldsymbol{\beta})=\bar{k}(\boldsymbol{\alpha}, \boldsymbol{\beta}) (α,kβ)=kˉ(α,β).
2)
( α , β + γ ) = ( α , β ) + ( α , γ ) (\boldsymbol{\alpha}, \boldsymbol{\beta}+\boldsymbol{\gamma})=(\boldsymbol{\alpha}, \boldsymbol{\beta})+(\boldsymbol{\alpha}, \boldsymbol{\gamma}) (α,β+γ)=(α,β)+(α,γ).
和在欧氏空间中一样, 因为
( α , α ) ⩾ 0 (\boldsymbol{\alpha}, \boldsymbol{\alpha}) \geqslant 0 (α,α)0,
故可定义向量的长度.
3) ( α , α ) \sqrt{(\boldsymbol{\alpha}, \boldsymbol{\alpha})} (α,α) 叫做向量
α \boldsymbol{\alpha} α 的长度, 记为 ∣ α ∣ |\boldsymbol{\alpha}| α.
4)柯西-布尼亚科夫斯基不等式仍然成立,即对任意的向量
α , β \boldsymbol{\alpha}, \boldsymbol{\beta} α,β, 有
∣ ( α , β ) ∣ ⩽ ∣ α ∣ ∣ β ∣ . |(\boldsymbol{\alpha}, \boldsymbol{\beta})| \leqslant|\boldsymbol{\alpha}||\boldsymbol{\beta}| . (α,β)α∣∣β∣.
当且仅当 α , β \alpha, \beta α,β 线性相关时,等号成立.
注意: 西空间中的内积 ( α , β ) (\boldsymbol{\alpha}, \boldsymbol{\beta}) (α,β)
一般是复数, 故向量之间不易定义夹角, 但我们仍引人
5) 向量 α , β \boldsymbol{\alpha}, \boldsymbol{\beta} α,β, 当
( α , β ) = 0 (\boldsymbol{\alpha}, \boldsymbol{\beta})=0 (α,β)=0 时,称为正交或互相垂直.
n n n
维西空间中,同样可以定义正交基和标准正交基,并且关于标准正交基也有下述一些重要性质:
6) 任意一组线性无关的向量可以用施密特过程正交化,
并扩充成为一组标准正交基.
7) 对 n n n 阶复矩阵 A \boldsymbol{A} A,用 A ‾ \overline{\boldsymbol{A}} A
表示以 A \boldsymbol{A} A 的元素的共轭复数作元素的矩阵, 如
A \boldsymbol{A} A 满足
A ‾ T A = A A ‾ T = E \overline{\boldsymbol{A}}^{\mathrm{T}} \boldsymbol{A}=\boldsymbol{A} \overline{\boldsymbol{A}}^{\mathrm{T}}=\boldsymbol{E} ATA=AAT=E,
就叫做西矩阵. 它的行列式的绝对值等于 1.
两组标准正交基的过渡矩阵是西矩阵.
类似于欧氏空间的正交变换和对称矩阵, 可以引进西空间的西变换和埃尔米特
(Hermite) 矩阵. 它们也分别具有正交变换和对称矩阵的一些重要性质,
我们把它列举在下面:
8) 西空间 V V V 的线性变换 A \mathscr{A} A, 如果满足
( A α , A β ) = ( α , β ) , (\mathscr{A} \boldsymbol{\alpha}, \mathscr{A} \boldsymbol{\beta})=(\boldsymbol{\alpha}, \boldsymbol{\beta}), (Aα,Aβ)=(α,β),
就称为 V V V 的一个酉变换. 西变换在标准正交基下的矩阵是西矩阵.
9) 如矩阵 A \boldsymbol{A} A 满足
A ˉ ⊤ = A , \bar{A}^{\top}=A, Aˉ=A,
则叫埃尔米特矩阵. 在西空间 C n \mathbf{C}^{n} Cn 中令
A ( x 1 x 2 ⋮ x n ) = A ( x 1 x 2 ⋮ x n ) , \mathscr{A}\left(\begin{array}{c} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{array}\right)=\boldsymbol{A}\left(\begin{array}{c} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{array}\right), A x1x2xn =A x1x2xn ,

( A α , β ) = ( α , A β ) . (\mathscr{A} \boldsymbol{\alpha}, \boldsymbol{\beta})=(\boldsymbol{\alpha}, \mathscr{A} \boldsymbol{\beta}) . (Aα,β)=(α,Aβ).
A \mathscr{A} A 也是对称变换.
10) V V V 是西空间, V 1 V_{1} V1 是子空间, V 1 ⊥ V_{1}^{\perp} V1 V 1 V_{1} V1
的正交补,则 V = V 1 ⊕ V 1 ⊥ V=V_{1} \oplus V_{1}^{\perp} V=V1V1.
又设 V 1 V_{1} V1 是对称变换的不变子空间,则 V 1 ⊥ V_{1}^{\perp} V1 也是不变子空间.
11) 埃尔米特矩阵的特征值为实数, 它的属于不同特征值的特征向量必正交.
12) 若 A \boldsymbol{A} A 是埃尔米特矩阵, 则有西矩阵 C \boldsymbol{C} C, 使
C − 1 A C = C ˉ ⊤ A C C^{-1} A C=\bar{C}^{\top} A C C1AC=CˉAC
是对角矩阵.
13) 设 A \boldsymbol{A} A 为埃尔米特矩阵,二次齐次函数
f ( x 1 , x 2 , ⋯   , x n ) = ∑ i = 1 ∞ ∑ j = 1 ∞ a i j x i x ˉ j = X ⊤ A X ‾ f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j} x_{i} \bar{x}_{j}=\boldsymbol{X}^{\top} \boldsymbol{A} \overline{\boldsymbol{X}} f(x1,x2,,xn)=i=1j=1aijxixˉj=XAX
叫做埃尔米特二次型. 必有西矩阵 C \boldsymbol{C} C, 当
X = C Y \boldsymbol{X}=\boldsymbol{C Y} X=CY 时,
f ( x 1 , x 2 , ⋯   , x n ) = d 1 y 1 y ˉ 1 + d 2 y 2 y ˉ 2 + ⋯ + d n y n y ˉ n . f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=d_{1} y_{1} \bar{y}_{1}+d_{2} y_{2} \bar{y}_{2}+\cdots+d_{n} y_{n} \bar{y}_{n} . f(x1,x2,,xn)=

  • 19
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值