高等代数(九)-欧几里得空间05:子空间

本文探讨了欧几里得空间中子空间的正交关系,包括正交子空间的定义、性质及正交补的存在性和唯一性。通过定理和证明阐述了正交子空间的直和性质以及正交补的概念。
摘要由CSDN通过智能技术生成

§ 5 § 5 §5 子空间
我们来讨论欧氏空间中子空间的正交关系.
定义 10 设 V 1 , V 2 V_{1}, V_{2} V1,V2 是欧氏空间 V V V 中两个子空间. 如果对于任意的
α ∈ V 1 , β ∈ V 2 \alpha \in V_{1}, \beta \in V_{2} αV1,βV2,恒有
( α , β ) = 0 , (\boldsymbol{\alpha}, \boldsymbol{\beta})=0, (α,β)=0,
则称 V 1 , V 2 V_{1}, V_{2} V1,V2 为正交的, 记为 V 1 ⊥ V 2 V_{1} \perp V_{2} V1V2, 一个向量
α \boldsymbol{\alpha} α, 如果对于任意的 β ∈ V 1 \beta \in V_{1} βV1, 怛有
( α , β ) = 0 , (\boldsymbol{\alpha}, \boldsymbol{\beta})=0, (α,β)=0,
则称 α \alpha α 与子空间 V 1 V_{1} V1 正交, 记为 α ⊥ V 1 \alpha \perp V_{1} αV1.
因为只有零向量与它自身正交, 所以由 V 1 ⊥ V 2 V_{1} \perp V_{2} V1V2 可知
V 1 ∩ V 2 = { 0 } V_{1} \cap V_{2}=\{0\} V1V2={ 0}; 由 α ⊥ V 1 , α ∈ V 1 \alpha \perp V_{1}, \alpha \in V_{1} αV1,αV1可知
α = 0 \boldsymbol{\alpha}=\mathbf{0} α=0.
关于正交的子空间,我们有
定理 5 如果子空间 V 1 , V 2 , ⋯   , V V_{1}, V_{2}, \cdots, V V1,V2,,V, 两两正交,那么利
V 1 + V 2 + ⋯ + V V_{1}+V_{2}+\cdots

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值