数学分析(十三)-函数列与函数项级数1-一致收敛性2-函数项级数3-一致收敛判别法2:阿贝尔【若①Σuₙ在区间Ⅰ一致收敛②{vₙ}单调③{vₙ(x)}≤M,则Σuₙ(x)·vₙ(x)在Ⅰ上一致收敛】

本文介绍了数学分析中阿贝尔判别法在判断函数项级数一致收敛性上的应用。定理13.6表明,如果函数项级数在区间I上一致收敛,vn(x)单调且有界,那么该级数乘以其单调有界函数vn(x)后在I上也一致收敛。
摘要由CSDN通过智能技术生成

下面讨论定义在区间 I I I 上形如

∑ u n ( x ) v n ( x ) = u 1 ( x ) v 1 ( x ) + u 2 ( x ) v 2 ( x ) + ⋯ + u n ( x ) v n ( x ) + ⋯ ( 13 ) \sum u_{n}(x) v_{n}(x)=u_{1}(x) v_{1}(x)+u_{2}(x) v_{2}(x)+\cdots+u_{n}(x) v_{n}(x)+\cdots \quad\quad(13) un(x)vn(x)=u1(x)v1(x)+u2(x)v2(x)+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值