数学分析(二十二)-曲面积分3-2:斯托克斯公式【建立沿空间双侧曲面S的积分与沿S的边界曲线L的积分之间的联系】

本文详细介绍了斯托克斯(Stokes)公式,阐述了如何通过该公式建立起空间双侧曲面S的积分与边界曲线L的积分之间的联系。通过定理22.6和22.7,讨论了曲面积分和曲线积分的转换,并通过实例说明了斯托克斯公式的应用和曲线积分的路线无关性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

斯托克斯(Stokes) 公式是建立沿空间双侧曲面 S S S 的积分与沿 S S S 的边界曲线 L L L 的积分之间的联系.

在讲下述定理之前, 先对双侧曲面 S S S 的侧与其边界曲线 L L L的方向作如下规定: 设有人站在 S S S 上指定的一侧, 若沿 L L L 行走,指定的侧总在人的左方, 则人前进的方向为边界线 L L L 的正向; 若沿 L L L 行走,指定的侧总在人的右方, 则人前进的方向为边界线 L L L 的负向,这个规定方法也称为右手法则, 如图 22-7所示.

在这里插入图片描述

定理 22.6

设光滑曲面 S S S 的边界 L L L 是按段光滑的连续曲线. 若函数 P , Q , R P, Q, R P,Q,R S S S (连同 L L L ) 上连续, 且有一阶连续偏导数, 则

∬ S ( ∂ R ∂ y − ∂ Q ∂ z ) d y   d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z   d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x   d y = ∮ L P   d x + Q   d y + R   d z , ( 2 ) \begin{aligned} & \iint_{S}\left(\cfrac{\partial R}{\partial y}-\cfrac{\partial Q}{\partial z}\right) \mathrm{d} y \mathrm{~d} z+\left(\cfrac{\partial P}{\partial z}-\cfrac{\partial R}{\partial x}\right) \mathrm{d} z \mathrm{~d} x+\left(\cfrac{\partial Q}{\partial x}-\cfrac{\partial P}{\partial y}\right) \mathrm{d} x \mathrm{~d} y \\ = & \oint_{L} P \mathrm{~d} x+Q \mathrm{~d} y+R \mathrm{~d} z, \quad\quad(2) \end{aligned} =S(yRzQ)dy dz+(zPxR)dz dx+(xQyP)dx dyLP dx+Q dy+R dz,(2)

其中 S S S 的侧与 L L L 的方向按右手法则确定.


先证

∬ S ∂ P ∂ z   d z   d x − ∂ P ∂ y   d x   d y = ∮ L P   d x , ( 3 ) \iint_{S} \cfrac{\partial P}{\partial z} \mathrm{~d} z \mathrm{~d} x-\cfrac{\partial P}{\partial y} \mathrm{~d} x \mathrm{~d} y=\oint_{L} P \mathrm{~d} x, \quad\quad(3) SzP dz dxyP dx dy=LP dx,(3)

其中曲面 S S S 由方程 z = z ( x , y ) z=z(x, y) z=z(x,y) 确定, 它的正侧法线方向数为 ( − z z , − z y , 1 ) \left(-z_{z},-z_{y}, 1\right) (zz,zy,1), 方向余弦为 ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) (\cos \alpha, \cos \beta, \cos \gamma) (cosα,cosβ,cosγ), 所以

∂ z ∂ x = − cos ⁡ α cos ⁡ γ , ∂ z ∂ y = − cos ⁡ β cos ⁡ γ . \cfrac{\partial z}{\partial x}=-\cfrac{\cos \alpha}{\cos \gamma}, \quad \cfrac{\partial z}{\partial y}=-\cfrac{\cos \beta}{\cos \gamma} . xz=cosγcosα,yz=cosγcosβ.

S S S x y x y xy 平面上投影区域为 D x y , L D_{x y}, L Dxy,L x y x y xy平面上的投影曲线记为 Γ \Gamma Γ. 现由第二型曲线积分定义及格林公式有

∮ L P ( x , y , z ) d x = ∮ r P ( x , y , z ( x , y ) ) d x = − ∬ D x y ∂ ∂ y P ( x , y , z ( x , y ) ) d x   d y . \begin{aligned} \oint_{L} P(x, y, z) \mathrm{d} x & =\oint_{r} P(x, y, z(x, y)) \mathrm{d} x \\ & =-\iint_{D_{x y}} \cfrac{\partial}{\partial y} P(x, y, z(x, y)) \mathrm{d} x \mathrm{~d} y . \end{aligned} LP(x,y,z)dx=rP(x,y,z(x,y))dx=DxyyP(x,y,z(x,y))dx dy.

因为

∂ ∂ y P ( x , y , z ( x , y ) ) =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值