数学分析(二十二)-曲面积分3-2:斯托克斯公式【建立沿空间双侧曲面S的积分与沿S的边界曲线L的积分之间的联系】

斯托克斯(Stokes) 公式是建立沿空间双侧曲面 S S S 的积分与沿 S S S 的边界曲线 L L L 的积分之间的联系.

在讲下述定理之前, 先对双侧曲面 S S S 的侧与其边界曲线 L L L的方向作如下规定: 设有人站在 S S S 上指定的一侧, 若沿 L L L 行走,指定的侧总在人的左方, 则人前进的方向为边界线 L L L 的正向; 若沿 L L L 行走,指定的侧总在人的右方, 则人前进的方向为边界线 L L L 的负向,这个规定方法也称为右手法则, 如图 22-7所示.

在这里插入图片描述

定理 22.6

设光滑曲面 S S S 的边界 L L L 是按段光滑的连续曲线. 若函数 P , Q , R P, Q, R P,Q,R S S S (连同 L L L ) 上连续, 且有一阶连续偏导数, 则

∬ S ( ∂ R ∂ y − ∂ Q ∂ z ) d y   d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z   d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x   d y = ∮ L P   d x + Q   d y + R   d z , ( 2 ) \begin{aligned} & \iint_{S}\left(\cfrac{\partial R}{\partial y}-\cfrac{\partial Q}{\partial z}\right) \mathrm{d} y \mathrm{~d} z+\left(\cfrac{\partial P}{\partial z}-\cfrac{\partial R}{\partial x}\right) \mathrm{d} z \mathrm{~d} x+\left(\cfrac{\partial Q}{\partial x}-\cfrac{\partial P}{\partial y}\right) \mathrm{d} x \mathrm{~d} y \\ = & \oint_{L} P \mathrm{~d} x+Q \mathrm{~d} y+R \mathrm{~d} z, \quad\quad(2) \end{aligned} =S(yRzQ)dy dz+(zPxR)dz dx+(xQyP)dx dyLP dx+Q dy+R dz,(2)

其中 S S S 的侧与 L L L 的方向按右手法则确定.


先证

∬ S ∂ P ∂ z   d z   d x − ∂ P ∂ y   d x   d y = ∮ L P   d x , ( 3 ) \iint_{S} \cfrac{\partial P}{\partial z} \mathrm{~d} z \mathrm{~d} x-\cfrac{\partial P}{\partial y} \mathrm{~d} x \mathrm{~d} y=\oint_{L} P \mathrm{~d} x, \quad\quad(3) SzP dz dxyP dx dy=LP dx,(3)

其中曲面 S S S 由方程 z = z ( x , y ) z=z(x, y) z=z(x,y) 确定, 它的正侧法线方向数为 ( − z z , − z y , 1 ) \left(-z_{z},-z_{y}, 1\right) (zz,zy,1), 方向余弦为 ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) (\cos \alpha, \cos \beta, \cos \gamma) (cosα,cosβ,cosγ), 所以

∂ z ∂ x = − cos ⁡ α cos ⁡ γ , ∂ z ∂ y = − cos ⁡ β cos ⁡ γ . \cfrac{\partial z}{\partial x}=-\cfrac{\cos \alpha}{\cos \gamma}, \quad \cfrac{\partial z}{\partial y}=-\cfrac{\cos \beta}{\cos \gamma} . xz=cosγcosα,yz=cosγcosβ.

S S S x y x y xy 平面上投影区域为 D x y , L D_{x y}, L Dxy,L x y x y xy平面上的投影曲线记为 Γ \Gamma Γ. 现由第二型曲线积分定义及格林公式有

∮ L P ( x , y , z ) d x = ∮ r P ( x , y , z ( x , y ) ) d x = − ∬ D x y ∂ ∂ y P ( x , y , z ( x , y ) ) d x   d y . \begin{aligned} \oint_{L} P(x, y, z) \mathrm{d} x & =\oint_{r} P(x, y, z(x, y)) \mathrm{d} x \\ & =-\iint_{D_{x y}} \cfrac{\partial}{\partial y} P(x, y, z(x, y)) \mathrm{d} x \mathrm{~d} y . \end{aligned} LP(x,y,z)dx=rP(x,y,z(x,y))dx=DxyyP(x,y,z(x,y))dx dy.

因为

∂ ∂ y P ( x , y , z ( x , y ) ) =

  • 17
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我会尽力回答你的问题。 曲线积分曲面积分都是数学中的重要概念,常用于物理、工程等领域的计算和分析。 首先,让我们来了解一下曲线积分曲线积分是沿着一条曲线对某个向量场进行积分的过程。具体来说,设曲线C为参数方程r(t)=(x(t), y(t), z(t)), t∈[a,b],向量场F为F=(P, Q, R),则曲线积分的形式为: ∫C F·dr = ∫ab F(r(t))·r'(t) dt 其中,·表示向量的点积,r'(t)表示曲线在t时刻的切向量。 接下来,让我们了解一下曲面积分曲面积分是沿着一个曲面对某个向量场进行积分的过程。具体来说,设曲面S为参数方程r(u,v)=(x(u,v), y(u,v), z(u,v)),向量场F为F=(P, Q, R),则曲面积分的形式为: ∫S F·dS = ∫∫S F(r(u,v))·n(u,v) dS 其中,·表示向量的点积,n(u,v)表示曲面在(u,v)处的法向量,dS表示曲面上面积元素。 在曲面积分中,常常会用到高斯公式和斯托克斯公式。 高斯公式是指对于任何一个有向光滑闭合曲面S和向量场F=(P,Q,R),都有: ∫S F·dS = ∫∫∫V div F dV 其中,div F表示向量场F的散度,V表示曲面S所围成的区域。 斯托克斯公式是指对于任何一个有向光滑曲面S和向量场F=(P,Q,R),都有: ∫S F·dr = ∫∫C curl F·n ds 其中,curl F表示向量场F的旋度,C表示曲面S的边界,n表示C的法向量,ds表示C上的弧长元素。 希望这些内容能够对你有所帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值