怎样求原函数? 读者很快就会发现这要比求导数困难得多.
原因在于原函数的定义不像导数定义那样具有构造性,即它只告诉我们其导数恰好等于某个已知函数 f f f, 而没有指出怎样由 f f f求出它的原函数的具体形式和途径.
因此,我们只能先按照微分法的已知结果去试探.
首先,我们把基本导数公式改写成基本积分公式:
- ∫ 0 d x = C \int 0 \mathrm{~d} x=C ∫0 dx=C.
- ∫ 1 d x = ∫ d x = x + C \int 1 \mathrm{~d} x=\int \mathrm{d} x=x+C ∫1 dx=∫dx=x+C.
- ∫ x α d x = x α + 1 α + 1 + C ( α ≠ − 1 , x > 0 ) \int x^{\alpha} \mathrm{d} x=\cfrac{x^{\alpha+1}}{\alpha+1}+C(\alpha \neq-1, x>0) ∫xαdx=α+1xα+1+C(α=−1,x>0).
- ∫ 1 x d x = ln ∣ x ∣ + C ② ( x ≠ 0 ) \int \cfrac{1}{x} \mathrm{~d} x=\ln |x|+C^{②}(x \neq 0) ∫x