数学分析(八)-不定积分1-2-基本积分表1:基本积分公式4【∫dx/[√1-x²]=arcsinx+C=-arccosx+C;∫dx/(1+x²)=arctanx+C=-arccotx+C】

本文介绍了不定积分的基本公式,包括∫dx/[√1-x²]、∫dx/(1+x²)等,并强调了这些公式在求解其他更复杂函数不定积分时的重要性。虽然不定积分的求解比求导更为复杂,但通过基本积分公式可以解决一部分问题。
摘要由CSDN通过智能技术生成

怎样求原函数? 读者很快就会发现这要比求导数困难得多.

原因在于原函数的定义不像导数定义那样具有构造性,即它只告诉我们其导数恰好等于某个已知函数 f f f, 而没有指出怎样由 f f f求出它的原函数的具体形式和途径.

因此,我们只能先按照微分法的已知结果去试探.

首先,我们把基本导数公式改写成基本积分公式:

  1. ∫ 0   d x = C \int 0 \mathrm{~d} x=C 0 dx=C.
  2. ∫ 1   d x = ∫ d x = x + C \int 1 \mathrm{~d} x=\int \mathrm{d} x=x+C 1 dx=dx=x+C.
  3. ∫ x α d x = x α + 1 α + 1 + C ( α ≠ − 1 , x > 0 ) \int x^{\alpha} \mathrm{d} x=\cfrac{x^{\alpha+1}}{\alpha+1}+C(\alpha \neq-1, x>0) xαdx=α+1xα+1+C(α=1,x>0).
  4. ∫ 1 x   d x = ln ⁡ ∣ x ∣ + C ② ( x ≠ 0 ) \int \cfrac{1}{x} \mathrm{~d} x=\ln |x|+C^{②}(x \neq 0) x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值