刚体运动中的旋转通常可以由旋转矩阵,旋转向量和四元数等多种方式表示,在Eigen库中也有其对应的实现。本文主要介绍刚体运动时旋转矩阵,旋转向量和四元数的初始化以及相互转换在Eigen中的实现方式。
1. Eigen库中各种形式的表示
旋转矩阵(3X3):Eigen::Matrix3d
旋转向量(3X1):Eigen::AngleAxisd
四元数(4X1):Eigen::Quaterniond
平移向量(3X1):Eigen::Vector3d
变换矩阵(4X4):Eigen::Isometry3d
四元数笔记参考
Eigen官网-四元数部分
补充学习资料
注意:
🕐程序代码与数学表示有细微差别,例如通过运算符重载,四元数和三维向量可以直接计算乘法。
🕑只有单位四元数才表示旋转矩阵,所以要先对四元数做单位化
q.normalized(); //important
Matrix3d R=q.toRotationMatrix();
相关代码:
#include <iostream>
#include <cmath>
using namespace std;
#include <Eigen/Core>
#include <Eigen/Geometry>
using namespace Eigen;
// 本程序演示了Eigen几何模块的使用方法
int main(int argc, char **argv){
// Eigen/Geometry 模块提供了各种旋转和平移的表示
// 1.1 旋转矩阵初始化
// 3D旋转矩阵直接使用Matrix3d和Matrix3f表示 3x3维
Matrix3d rotation_matrix = Matrix3d::Identity();
// 1.2 旋转向量初始化
// 旋转向量使用AngleAxisd,它的底层不是Matrix,但运算可以当作矩阵(因为重载了运算符)
AngleAxisd rotation_vector(M_PI / 4, Vector3d(0, 0, 1)); //沿z轴旋转45度
cout.precision(3); // 输出保留小数点后三位
// 1.3 (向量)转换成矩阵形式
cout << "rotation matrix = \n" << rotation_vector.matrix() << endl; // 用matrix()转换成矩阵
//阵也可以直接赋值
rotation_matrix = rotation_vector.toRotationMatrix();
// 2.1 用AngleAxis可以进行坐标变换
Vector3d v(1, 0, 0);
Vector3d v_rotated = rotation_vector * v;
cout << "(1, 0, 0) after rotation (by angle axis) = " << v_rotated.transpose() << endl;
// 2.2 用旋转矩阵进行坐标变换
v_rotated = rotation_matrix * v;
cout << "(1, 0, 0) after rotation (by matrix) = " << v_rotated.transpose() << endl;
// 3. 欧拉角: 可以将旋转矩阵直接转换成欧拉角
// 欧拉角直接用Vector3d表示
Vector3d euler_angles = rotation_matrix.eulerAngles(2, 1, 0); // ZYX顺序,即roll, pitch, yaw顺序
cout << " yaw pitch roll = " << euler_angles.transpose() << endl;
// 4. 欧式变换矩阵使用Eigen::Isometry
Isometry3d T = Isometry3d::Identity(); // 虽然成为3d,但实际上是4x4矩阵
T.rotate(rotation_vector); // 按照ratation_vector进行旋转
T.pretranslate(Vector3d(1, 3, 4)); // 把平移向量设置成(1, 3, 4)
cout << "Transform matrix = \n" << T.matrix() << endl;
// 5. 用变换矩阵进行坐标变换
Vector3d v_transformed = T * v; // 相当于R*V+t
cout << "v transformed =" << v_transformed.transpose() << endl;
// 6. 对于仿射变换和影射变换,使用Eigen::Affine3d和Eigen::Projective3d
// 7. 四元数 Eigen::Quaterniond(4X1)
// 7.1 可以直接把AngleAxis赋值给四元数,反之亦然
Quaterniond q = Quaterniond(rotation_vector); // 赋值
//coeffs输出系数函数:的顺序是(x,y,z,w),w是实部,前三项是虚部
cout << " quaternion from rotation vector = " << q.coeffs().transpose() << endl;
// 7.2 也可以把旋转矩阵赋给它
q = Quaterniond(rotation_matrix);
cout << "quaternion from rotation matrix = " << q.coeffs().transpose() << endl;
// 输出旋转矩阵,只有单位四元数才表示旋转矩阵,所以要先对四元数做单位化
q.normalized(); //important
Matrix3d R=q.toRotationMatrix();
cout << R << endl;
// 7.3 使用四元数旋转一个向量,使用重载的乘法即可
v_rotated = q * v; // 注意数学上是qvq^{-1}
cout << "(1,0,0) after rotation = " << v_rotated.transpose() << endl;
// 用常规向量乘法表示,则计算如下
cout << "should be equal to " << (q * Quaterniond(0, 1, 0, 0) * q.inverse()).coeffs().transpose() << endl;
return 0;
}
输出结果:
rotation matrix =
0.707 -0.707 0
0.707 0.707 0
0 0 1
(1, 0, 0) after rotation (by angle axis) = 0.707 0.707 0
(1, 0, 0) after rotation (by matrix) = 0.707 0.707 0
yaw pitch roll = 0.785 -0 0
Transform matrix =
0.707 -0.707 0 1
0.707 0.707 0 3
0 0 1 4
0 0 0 1
v transformed =1.71 3.71 4
quaternion from rotation vector = 0 0 0.383 0.924
quaternion from rotation matrix = 0 0 0.383 0.924
0.707 -0.707 0
0.707 0.707 0
0 0 1
(1,0,0) after rotation = 0.707 0.707 0
should be equal to 0.707 0.707 0 0