优秀的开源SLAM

1. Hot SLAM Repos on GitHub

2. SLAM - The PC End

3. SLAM - The Mobile End

4. Depth Image API with iPhone 7 Plus (or newer)

5. LIO系统

5.1. direct_lidar_inertial_odometry

github地址:https://github.com/vectr-ucla/direct_lidar_inertial_odometry

论文地址:https://arxiv.org/pdf/2203.03749.pdf

视频地址:https://www.youtube.com/watch?v=4-oXjG8ow10&ab_channel=VECTRLaboratoryatUCLA

5.2. hm-lio(个人项目,无论文)

github地址:https://github.com/chengwei0427/hm-lio

视频地址:HM-LIO: A Hash Map based LiDAR-Inertial Odometry_哔哩哔哩_bilibili

5.3. VoxelMapPlus_Public

github地址:https://github.com/uestc-icsp/VoxelMapPlus_Public

论文地址:https://arxiv.org/pdf/2308.02799.pdf

视频地址:https://www.bilibili.com/video/BV16h4y1r7Cm/

5.4. Ct-lio(个人开发版本)

  • github地址:https://github.com/chengwei0427/ct-lio

  • 论文地址:https://arxiv.org/pdf/2109.12979.pdf

  • 视频地址:https://space.bilibili.com/38956861

5.5. MA-LIO

  • github地址:https://github.com/minwoo0611/MA-LIO

  • 论文地址:https://arxiv.org/pdf/2305.16792.pdf

  • 视频地址:https://www.youtube.com/watch?v=M-GWxY2L_Fs&ab_channel=shibozhao

5.6. ekf_loam

  • github地址:https://github.com/ITVRoC/ekf_loam

5.7. Fast-lio

  • github地址:https://github.com/hku-mars/FAST_LIO

  • 论文地址:https://arxiv.org/pdf/2010.08196.pdf          https://github.com/hku-mars/FAST_LIO/blob/main/doc/Fast_LIO_2.pdf

  • 视频地址:https://www.youtube.com/watch?v=2OvjGnxszf8&ab_channel=MARSLABHKU

5.8. Point-LIO

  • github地址:https://github.com/hku-mars/Point-LIO

  • 论文地址:https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202200459

  • 视频地址:https://www.youtube.com/watch?v=oS83xUs42Uw&ab_channel=MARSLABHKU

5.9. VoxelMap

  • github地址:https://github.com/hku-mars/VoxelMap

  • 论文地址:https://arxiv.org/pdf/2109.07082.pdf

  • 视频地址:https://www.youtube.com/watch?v=HSwQdXg31WM&ab_channel=MARSLABHKU

5.10. LIO-PPF

  • github地址:https://github.com/xingyuuchen/LIO-PPF

  • 论文地址:https://arxiv.org/pdf/2302.14674.pdf

5.11. LOG-LIO

  • github地址:https://github.com/tiev-tongji/LOG-LIO

  • 论文地址:https://arxiv.org/pdf/2307.09531.pdf

6. 多传感器融合定位方案

6.1. LIO_SAM_6AXIS

  • github地址:https://github.com/JokerJohn/LIO_SAM_6AXIS

6.2. fast-lio与lio-sam的结合与改进

  • github地址:https://github.com/engcang/FAST-LIO-SAM

  • github地址:https://github.com/kahowang/FAST_LIO_SAM

6.3. SDV-LOAM

  • github地址:https://github.com/ZikangYuan/SDV-LOAM

  • 论文地址:https://ieeexplore.ieee.org/abstract/document/10086694

7. 回环检测

7.1. Occupied-Place-Description

  • github地址:https://github.com/ShiPC-AI/Occupied-Place-Description

7.2. Uncertainty-LPR

  • github地址:https://github.com/csiro-robotics/Uncertainty-LPR

  • 论文地址:https://arxiv.org/pdf/2210.01361.pdf

7.3. STD

  • github地址:https://github.com/hku-mars/STD

  • 论文地址:https://arxiv.org/pdf/2209.12435.pdf

  • 视频地址:https://www.youtube.com/watch?v=O-9iXn1ME3g&ab_channel=MARSLABHKU

8. 点云配准

8.1. Pagor

  • github地址:https://github.com/HKUST-Aerial-Robotics/Pagor

  • 论文地址:https://arxiv.org/pdf/2307.12116.pdf

8.2. GH-ICP

  • github地址:https://github.com/YuePanEdward/GH-ICP

  • 论文地址:https://arxiv.org/pdf/1808.03899.pdf

8.3. nicp

  • github地址:https://github.com/yorsh87/nicp

  • 论文地址:http://jacoposerafin.com/wp-content/uploads/serafin17ras.pdf

8.4. TEASER++

  • github地址:https://github.com/MIT-SPARK/TEASER-plusplus

  • 论文地址:https://arxiv.org/pdf/2001.07715.pdf

8.5. LiDAR-Registration-Benchmark

  • github地址:https://github.com/HKUST-Aerial-Robotics/LiDAR-Registration-Benchmark

9. 大规模建图

HBA

  • github地址:https://github.com/hku-mars/HBA

  • 论文地址:https://arxiv.org/pdf/2209.11939.pdf

  • 视频地址:https://www.bilibili.com/video/BV1Qg41127j9/?spm_id_from=333.999.0.0&vd_source=af3f3d6d96e7e41b0f57b586f5fbdcc2

10. 传感器标定

10.1. joint-lidar-camera-calib(lidar camera)

  • github地址:https://github.com/hku-mars/joint-lidar-camera-calib

  • 论文地址:https://arxiv.org/pdf/2308.12629.pdf

10.2. mlcc(lidar camera)

  • github地址:https://github.com/hku-mars/mlcc

  • 论文地址:https://ieeexplore.ieee.org/document/9779777

  • 视频地址:https://www.youtube.com/watch?v=PaiYgAXl9iY&ab_channel=MARSLABHKU

10.3. LiDAR_IMU_Init

  • github地址:https://github.com/hku-mars/LiDAR_IMU_Init

  • 论文地址:https://ieeexplore.ieee.org/document/9982225

  • 视频地址:https://www.youtube.com/watch?v=WiHgcPpKwvU&ab_channel=MARSLABHKU

11. 非传统方法SLAM方案

NeRF-SLAM

  • github地址:https://github.com/ToniRV/NeRF-SLAM

  • 论文地址:https://arxiv.org/pdf/2210.13641.pdf

  • 视频地址:https://www.youtube.com/watch?v=-6ufRJugcEU&ab_channel=AntoniRosinol

12. 工程化实现

12.1. Lidar-camera-fusion

  • github地址:https://github.com/EPVelasco/lidar-camera-fusion

  • 论文地址:https://arxiv.org/pdf/2211.04085.pdf

  • 核心内容:点云投影到图像;点云插值

12.2. matplotlib-cpp

  • github地址:https://github.com/lava/matplotlib-cpp

  • 核心内容:c++绘图,本质是python matplotlib绘图,封装成c++头文件

12.3. Efficient Graduated Non-Convexity for Pose Graph Optimization

  • github地址:https://github.com/SNU-DLLAB/EGNC-PGO

  • 论文地址:https://arxiv.org/pdf/2310.06765.pdf

  • 核心内容:优化控制参数u

12.4. Image-to-point cloud Registration Tool

  • github地址:https://github.com/XiaoBaiiiiii/colmap-pcd

  • 论文地址:https://arxiv.org/abs/2310.05504

  • 视频地址:https://www.youtube.com/watch?v=TuX8tCmJCC8&ab_channel=JiZhang

  • 核心内容:图像与点云配准

12.5. visualize_semanticKITTI

  • github地址:https://github.com/xieKKKi/visualize_semanticKITTI

  • 核心内容:可视化语义kitti

12.6. real-time normal estimator for spinning LiDAR

  • github地址:https://github.com/tiev-tongji/RingFalsNormal

  • 视频地址:https://www.youtube.com/watch?v=cxTLywI7X7M&ab_channel=huangkai

  • 核心内容:机械式雷达实时法向量估计

13. Paper-List

Image-Matching-Paper-List

  • github地址:https://github.com/chicleee/Image-Matching-Paper-List

14. 数据集

14.1. 用于车对车协作感知的大规模现实数据集

  • github地址:https://github.com/ucla-mobility/V2V4Real

  • 论文地址:https://arxiv.org/pdf/2303.07601.pdf

14.2. 正在进行的施工现场数据集 用于地点识别

  • github地址:https://github.com/dongjae0107/ConPR

  • 论文地址:Con{PR}: Ongoing Construction Site Dataset for Place Recognition

15. Tutorials

参考文献

GitHub 上优秀的开源SLAM repo (更新中)_slam github-CSDN博客

SLAM领域超实用开源方案汇总一 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值