Patchwork++:基于点云的快速、稳健的地面分割方法

1. 背景

论文发表在2022IROS,是Patchwork的改进版本。算法通过数学方法进行快速而鲁棒性很强的地面分割,在智能机器人上的可操作性非常强。通过微调算法,可以应用于16-beams等多种规格的激光雷达。由于激光雷达点云数据标注的难度非常大,生产中自制数据集的成本很高,我做了一些对比实验,和RandLA-Net,Cylinder3D,GndNet,PVKD等机器学习模型进行比较,在分割地面这一任务上,用自制数据集测试,Patchwork++的表现远好于其他。

本文对 Patchwork 和 Patchwork++ 两篇论文作分析和介绍,简单讲述论文作者的思路和数学原理,最后展示根据需求修改后的算法表现效果——在不同设备上表现依然迅速稳健。

2. 摘要

传统数学方法,采用求反射梯度与地面对比的思路,对于高度有差别的平面难以识别(如低矮路沿),分割出的地面不是很合适。论文提出一种鲁棒性很强的分割方法,基于 Patchwork 的思路进行改进,自适应地调整参数,效果提升明显,运行速度极快。

3. 理论

Patchwork++ 的基本理论思路和 Patchwork 类似,下面将结合两篇论文,对方法中的每个步骤进行说明和讲解。

图 3-1:Patchwork++理论架构对比

3.1. Problem Definition 问题定义

对地面分割做数学建模:对于所有的点云表示为P=\left\{​{\bf p}_{1},{\bf p}_{2},\ldots,{\bf p}_{k},\ldots,{\bf p}_{n}\right\},对点集进行二分类,分为G地面和N非地面,其中包括车辆,行人,植被,墙体等。其研究目标是最大化TP,最小化FN和FP,对于点集P可以有以下表示:

P=\bigcup_i p_i=G \cup N=\hat{G} \cup \hat{N}

3.2. RNR: Reflected Noise Removal 反射噪声去除

思路:取出距离传感器较近的、高度小于某阈值,强度小于某阈值的数据点,这些点被认为是噪声点。实际情况下,由于激光雷达穿透效应,在地面以下偶尔也会产生噪声点,将其称为虚拟噪声,用一个自动更新的高度阈值,认为该阈值以下的点都为噪声,将其去除。

图 3.2-1:地面以下的虚拟噪声点的产生

实现:维护两个阈值,高度阈值h_{noise}和强度阈值I_{noise},高度阈值在 A-GLE 环节自动更新。h_{noise}需要自动更新,其原因在于如果采用固定值z_{min},在向下陡坡的场景中,就会去除真实的地面点,造成数据缺失。如下图所示,(a) 表示GT,红色点表示为高度较低的地面;(b) 表示用定值 基于直接高度去除了真值(Patchwork方法);(c) 表示在 Patchwork 算法下造成了比较严重的欠分割情况;(d) 表示 Patchwork++ 算法维护一个自动更新的h_{noise},成功识别到了高度较低/下降坡度的地面。

图 3.2-2 RNR实现效果

3.3. CZM: Concentric Zone Model 同心区域模型

思路:用设计的扇区分割路面,用扇区拟合路面几何形态。基于路面非平坦假设,不应直接估计地面,而是通过假设非平坦地面有多个小块bin,在小块之内地面是平坦的。以往的方法用统一的极坐标系表示扇区S,再将扇区S划分为规则间隔的BIN。范用性不强,有以下两个缺陷:

  • 稀疏问题:随距离增长,点云越发稀疏,难以找到正确的平面。
  • 代表性问题:靠近原点的bin太小,难以表示扇区的空间特征,有时会导致扇区内地面法向量估计失败。
图 3.3-1 两种不同的扇区分割方式

实现:以一种不增加计算复杂度的方式在bin之间分配适当的密度,数学模型如下:

全点集P被分为多个zone,每个zone由不同面积大小的bin组成,定义为:

其中,Z_m表示为zone,N_z表示zone的个数,那么Z_m表示为:

L_{min, m}L_{max, m}表示Z_m的最小和最大向径边界;同样被划分为多个N_{r, m} \times N_{\theta, m}个bins,对于不同的zone,bin的大小也不同。在这里,S_{i,j,m}的定义为:

\mathcal{S}_{i, j, m}=\left\{\mathbf{p}_k \in Z_m \left\lvert\, \frac{(i-1) \cdot \Delta L_m}{N_{r, m}} \leq \rho_k-L_{\min }<\frac{i \cdot \Delta L_m}{N_{r, m}}\right., \frac{(j-1) \cdot 2 \pi}{N_{\theta, m}}-\pi \leq \theta_k<\frac{j \cdot 2 \pi}{N_{\theta, m}}-\pi\right\}

其中,\rho_k=\sqrt{x_k^2+y_k^2}, \theta_k=\arctan 2\left(y_k, x_k\right), \Delta L_m=L_{\max , m}-L_{\text {min }, m},且L_{max, m} = L_{min, m+1},对于全局最小边界L_{min},其用于考虑移动平台或车辆附近的空旷情况。

实际实现,对于Z_{1},Z_{2},Z_{3},Z_{4}分别被称为中心区、四分之一区、半区和外区,统称为一个central zone,其中Z_1, Z_4的bin大小被设置的更大,以解决稀疏性问题和表示性问题。其计算方法为:

3.4. R-VPF: Region-wise Vertical Plane Fitting 区域垂直平面拟合

思路:由于路面可能存在一些高低差,在拟合时认为高程差不多的平面为同一个路面。拟合平面前,找到每个bin中的垂直点子集,将bin内的垂直平面找到并作过滤掉,拟合出更准确的平面。由于 PCA(点云主成分析)对于异常点敏感,经过这一步骤处理后可适用范围更广。

图 3.4-1 可视化描述区域垂直平面拟合

实现:利用 CMZ 分割得到的bin,设第n个bin为P_n,通过以下4个步骤得到估计出的垂直点\hat{V}_n

以如下操作对bin进行k次迭代,挑选出足够的种子点集。

  • 预选种子点集

进行k次迭代,每次迭代选取”一些”(论文原句)高度最低的点,求这些点的平均值\mathbf{m}_{n}^{k}\in\mathbb{R}^{3}\;,以及该子集的单位法向量v^k_{3, n},代表 PCA 后最小特征值对应的归一化后的单位特征向量。

  • 潜在垂直平面点集

对第k次迭代的种子点集\hat{P}_{n}^{k},挑选出潜在的垂直平面点集\hat{W}_{n,k},公式如下:

其中,k = 1时\hat{P}_{n}^{k}\leftarrow P_{n},即种子点集为第n个bin的全部点。每次迭代时\hat{P}_{n}^{k}\leftarrow P_{n}-\bigcup_{i=1}^{k-1}\hat{V}_{n}^{i},即上一次的种子点集减去之前迭代出的所有垂直点;d_v表示估计的垂直平面的距离阈值。

  • 二值化验证点集

对第k次迭代的潜在垂直平面点集{\hat{W}}_{n,k},二值验证出认为真正垂直的点集$\hat{V}_n^k$,公式如下:

其中,u_z表示z轴方向的单位法向量[0, 0, 1]^T\theta_v是估计平面的单位法向量的阈值(点的法向量和z轴法向量做点乘,两个单位向量的点乘结果就是夹角的cos值,判断该值与90度的相近程度。在范围内,由这次迭代的潜在点找到的垂直点集,可以被认为是垂直点集;否则,这次的垂直点集,不能认为是垂直的)。

最后,累积所有的垂直点得到总的垂直点集\hat{V}_nK_v表示总的迭代次数,公式如下:

3.5. R-GPF: Region-wise Ground Plane Fitting 区域地面拟合

思路:估计局部地面,将局部地面合并。对 R-VPF 处理后的各个bin进行PCA,取第三个特征代表高度特征。采用 PCA 在速度上至少比 RANSAC 快两倍,进行预处理后,效果类似。通俗来讲,设置一个阈值,每次迭代更新阈值,3次迭代后挑选出合适的地面种子点。

实现:对以上操作得到的bin进行计算,数学模型如下:

对zone内n个bin内的点集命名为S_n,共计有$\mathcal{N}_c=\Sigma_{m=1}^{N_z} N_{r, m} \times N_{\theta, m}$个这样的集合。如果一个 zone内有足够多的bin,即可以认为足够拟合平面,选取z最低的点作为种子点。令$\bar{z}_{i n i t}$作为N_{seed}个种子点的z的平均值,则初始的地面的估计如下:

其中函数z( \cdot )返回点的高度值,z_{seed}表示种子点挑选高度阈值。第一次估计的地面点,是z高度不大于平均高度与高度阈值之和\bar{z}_{i n i t} + z_{seed}的点集。

算法经过l次迭代计算出bin的地面拟合$\hat { G } _ { n } ^ { l }$,第l次迭代的地面法向量为n^l_n。接着计算地面系数$d _ { n } ^ { l }$

其中,\bar{p}^l_n是第l次迭代,所有被分类为地面的点的平均值,用l次迭代得到的地面估计的平均点与法向量点乘,可以反映两个向量之间的投影值。第l+1次迭代的地面估计值计算公式为:

其中,\hat{d}_k=-(\mathbf{n}_n^l)^T\mathbf{p}_kM_d表示平面高度阈值。实验证明,当\hat{G}_n=\hat{G}_n^3即进行3次迭代的效果最好。

3.6. A-GLE: Adaptive Ground Likelihood Estimation 自适应地面似然估计

思路:对上一步处理后得到的bin内种子点做处理,估计一个bin是否为地面。从 Uprightness 垂直度\phi(\cdot)、Elevation 高程差\psi(\cdot)和 Flatness 平整度\varphi(\cdot)三个方向设计。

实现:从Patchwork 的 GLE 步骤讲起,如下设计函数用于评估bin为是否为平面:

Uprightness \phi:为了使\hat{G}_{n}中大部分点都归属于地面(尽可能为TP),对每个zone的法向量\mathbf{v}_{3,n}做如下操作:

其中,z=[0,0,1]^T\theta_{\tau}为设置的角度阈值,这部分实际计算为bin内法向量与X-Y平面的夹角,当夹角趋于90^{\circ}时,意味着bin拟合的区域平面越平整。\theta_{\tau}在论文中被经验化地设置为45^{\circ},即拟合出的区域平面的最大倾斜角度为45^{\circ}

Elevation \psi为了解决高度不同的平面计算得到一样的垂直度,而误把一些建筑物或车辆顶部当作地面的误检,引入高程差计算项,具体如下:

其中\kappa(\cdot)为使r_n呈指数增长的自适应中点函数;如果r_{n}<L_{r},即距离太远,则不予考虑,认为该平面仅由平整度和垂直度考虑。当bin的平均高度\bar{z}_{n}<\kappa(r_{n})时,即认为其为地面的可能性较高,输出值大于0.5;反之,认为其为地面的可能性较低,输出值小于0.5。

Flatness \varphi为增加上坡地面的判断,利用高度判断的结果,对一些坡度较高的上坡地面进行拟合。

\psi \geqslant 0.5时,地面已经足够平整,无需计算该项;当\psi < 0.5时,需要判断其是否是可能的上坡路面。其中,\zeta>1为一个设定的系数,目的是使得函数结果更明显;\sigma_n表示bin的平整度,\sigma_{\tau,m}为设定的平整度阈值,计算方法如下:

\lambda_{1,n},\lambda_{2,n},\lambda_{3,n}为bin的 PCA 特征,按降序排列。

最后,对所有bin统一以上三个方面,计算出整个点云的拟合平面\hat{G},统计\mathcal{L}(\theta,\mathcal{X})>0.5的bin的集合,即为所拟合出的路面。

改进:不难发现,GLE 中设计了许多参数,根据不同环境需要有不同的选择;在选择参数时,尤其是在计算高程差\psi所用的\kappa(r_n)、计算平整度\varphi时所用的\sigma_{\tau,m}非常耗时。Patchwork++论文基于 GLE 提出 A-GLE,为方便描述,将原先的\bar{z}_{n},\sigma_{n},\kappa(r_{n}),\sigma_{\tau,m}更换为e_{n},f_{n},e_{\tau,m},f_{\tau,m},即高程相关用e表示,平整度相关用f表示。

图 3.5-1 U、H、C表示城市、高速公路和乡村,不同场景下e, f 的分布具有,明显差异

为解决该问题,Patchwork++论文基于 GLE 提出 A-GLE,一种自适应的参数调整方法,同时更新 RNR 步骤的高度阈值h_{noise}

Elevation e:用 Definite Ground D_m表示 CZM 步骤中第m个zone,计算\phi(\cdot)\cdot\psi(\cdot)满足平面拟合标准。

E_mD_m中bin的e_n的集合,基于E_m,对高程标准阈值e_{\tau,m}进行更新:

其中,mean(\cdot)表示集合均值,stdev(\cdot)表示集合标准差,a_m为 CZM 中第m个ring的标准差修正增益,是定值。

Flatness f:由于将空间划分为bin,经过 PCA 计算得到的特征值\lambda_{1, n}\lambda_{2, n}是直接基于点云的,拟合出的平面会有坐标系未对齐的问题,导致平面拟合出现错误。这里对原先算法作纠正,直接用

\lambda_{3,n}=f_n平面法向量代替平整度估计。

类似的,令F_mD_mf_n的集合,基于F_m,对平整度标准阈值f_{\tau,m}进行更新:

其中,b_{m}>0表示 CZM 中第m个ring的标准差修正增益,是定值。

Noise Removal Height h:思路类似。

其中,E_1表示距离传感器最近的一环zone中的种子点z的集合,\delta < 0为需要移除的高度边界。

3.7. TGR: Temporal Ground Revert 临时地面还原

思路:对 A-GLE 处理后估计的地面进行纠正,恢复一些被误检的bin。一个bin内可能存在部分异常点使得地面拟合失效(例如崎岖的草地),计算值很可能超过阈值而导致错误估计。这是因为 A-GLE 是随时间推移依据所有的bin更新阈值,在当前时间更新的值会在下次被利用,但当前时间下的估计就会发生偏差;且采用均值加权更新,显然对于一些估计值偏大的bin会出现误检。

其中,c_m为 CZM 第m个ring的标准差,是固定的值;F_m^tD_m^t中平整度f_n的集,对于被拒绝的 f_{n}>f_{\tau,m}的bin,如果其bin满足f_{n}<f_{\tau,m}^{t},则被纠正为地面。

图 3.7-1 A-GLE 和 TGR 的可视化描述。 A-GLE存储估计的地平面的变量,即en和fn,并根据先前的估计结果更新其参数。 TGR 根据时间 t 时估计的地平面的变量来双重检查未分割的地面。

4. 表现

4.1. 论文数据

图 4.2-1: Performance comparison between our proposed method and otherground segmentation methods. Metrics are expressed as (mean)±(stdev).
图 4.2-2: Speed comparison of ground segmentation methods on Se-quence 05 of the SemanticKITTI dataset, using Intel(R) Core(TM) i7-7700K CPU (unit: Hz).

4.2. 自测表现

运行环境:

  • OS: Ubuntu 20.04.6 LTS
  • CPU: 12th Gen Intel® Core™ i7-12700H × 20
  • GPU: NVIDIA GeForce RTX 3060 Laptop GPU
  • Python: 3.6.13
  • Open3D: 0.17.0

运行效果:

  • 数据:Velodyne-Puck(VLP-16)在园区内采集。
  • 速度:1.8ms-5.1ms,平均在2.6ms。
  • 表现:粗略统计,在自制数据集上测试,80%以上的场景在20m半径内正确分割路面,95%以上的场景在10m半径内正确分割路面。
图 4.2-3:算法运行效果对比:微调后算法在真实数据上测试(左上),原始算法在真实数据上测试(右上),微调后算法在SemanticKITTI上测试(左下),RandLA-Net模型在真实数据上测试(右下)

参考文献

Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Patchwork++: Fast and Robust Ground Segmentation Solving Partial Under-Segmentation Using 3D Point Cloud

论文分享:Patchwork++/Patchwork-基于点云的快速稳健地面分割算法 - 知乎

超详细的激光点云地面分割(可行驶区域提取)方案_激光点云数据的平面分割-CSDN博客

Patchwork++:基于点云的快速、稳健的地面分割方法-腾讯云开发者社区-腾讯云

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值