ROS系统 摄像头标定camera calibration

1、安装标定功能包

sudo apt-get install ros-melodic-camera-calibration

2、打开摄像机,启动标定节点

rosrun camera_calibration cameracalibrator.py --size 8x5 --square 0.028 image:=/usb_cam/image_raw camera:=/usb_cam

size:棋盘内角点的个数,行*列
square:一个格子的边长,单位是m
image:摄像头发布的图像话题明
camera:相机名
3、点击calibrate按钮计算标定参数,标定结束后输出标定参数

[image]
width
640
height
480
[narrow_stereo]
camera matrix
496.458369 0.000000 321.704479
0.000000 498.045492 245.523491
0.000000 0.000000 1.000000
distortion
0.156540 -0.184929 0.004541 0.004684 0.000000
rectification
1.000000 0.000000 0.000000
0.000000 1.000000 0.000000
0.000000 0.000000 1.000000
projection
513.121582 0.000000 324.144520 0.000000
0.000000 515.390259 246.954678 0.000000
0.000000 0.000000 1.000000 0.000000

4、内参矩阵和畸变参数解释 http://blog.csdn.net/wangshuailpp/article/details/52953323
在这里插入图片描述
在这里插入图片描述
5、点击save 按钮保存标定数据,在/tmp目录下会得到一个压缩包,包含标定用的图像和标定参数ost.yaml ost.txt

<think>好的,用户询问的是ROS2中进行摄像头标定的教程、工具以及过程和参数配置。首先,我需要回忆ROS2和ROS1在摄像头标定方面的异同。ROS1中常用的是camera_calibration包,而ROS2是否有对应的工具呢? 记得ROS2生态还在逐步完善,可能有些ROS1的包已经移植到了ROS2。需要确认是否有官方的camera_calibration包支持ROS2。查阅资料发现,ROS2的相机标定可以使用ros2_camera_calibration这个包,或者是image_pipeline中的相机标定组件。比如,在ROS2 Foxy或Humble版本中,可能已经整合了相关的工具。 接下来,用户需要具体的步骤。首先,安装相关包。在ROS1中是使用apt安装,ROS2应该类似。可能需要通过源码安装或者二进制包。比如,使用sudo apt install ros-humble-camera-calibration-parsers这样的命令。需要检查正确的包名,可能包括camera_calibrationcalibration_toolkit等。 然后是标定板的准备。用户需要打印棋盘格标定板,通常使用8x6的棋盘,每个方格大小比如108mm。这部分和ROS1类似,标定板的要求可能相同。标定前要确保摄像头已经正确连接,并发布图像话题。ROS2中的话题名称可能有所不同,需要确认摄像头驱动是否正确发布/image_raw和/camera_info话题。 启动标定节点的命令在ROS2中可能不同。比如,使用ros2 run camera_calibration cameracalibrator命令,并指定参数。参数方面,需要指定棋盘格的行列数、方格尺寸,以及图像的话题名称。例如,--size 8x6 --square 0.108,并指定image:=/my_camera/image_raw。 交互式界面方面,ROS2的标定工具是否像ROS1那样有图形界面?可能需要用户移动标定板以覆盖不同的视角,收集足够的数据点。当标定完成后,生成参数文件的位置可能不同,比如在ROS2中保存到~/.ros/camera_info/目录下,还是其他路径。需要确认保存命令是否正确,比如点击“CALIBRATE”按钮后,再保存到指定位置。 参数配置部分,标定后的yaml文件需要正确包含相机矩阵、畸变系数等。可能还需要验证标定结果,例如在RViz2中查看去畸变后的图像效果。此外,用户可能需要调整标定参数,比如不同的棋盘格大小或者标定次数,来优化结果。 用户可能遇到的问题包括标定板检测不到,这时候需要检查标定板的大小参数是否正确,摄像头对焦是否清晰。此外,标定过程中需要确保各个方向的覆盖,比如X、Y、倾斜和距离的变化,以便标定算法能准确计算参数。 最后,生成相关问题需要考虑用户可能进一步的疑问,比如如何处理标定失败的情况,标定参数如何应用到实际项目中,或者如何验证标定的准确性。可能还需要比较ROS1和ROS2在标定流程上的差异,以及常见错误的解决方法。</think>### ROS2摄像头标定教程及工具 #### **1. 安装标定工具** ROS2的摄像头标定工具集成在`camera_calibration`包中。安装命令如下: ```bash sudo apt install ros-<distro>-camera-calibration ``` 将`<distro>`替换为你的ROS2版本(如`humble`或`foxy`)[^2]。 #### **2. 准备标定板** - 使用标准的棋盘格标定板(如8×6方格,每个方格边长0.108米)。 - 打印并固定标定板,确保表面平整且无反光。 #### **3. 启动摄像头驱动** 确保摄像头节点已启动并发布图像话题(例如`/image_raw`和`/camera_info`): ```bash ros2 run <camera_driver_pkg> <camera_node> ``` #### **4. 启动标定工具** 运行标定节点并指定参数: ```bash ros2 run camera_calibration cameracalibrator \ --size 8x6 \ --square 0.108 \ image:=/image_raw \ camera:=/camera ``` - `--size`:棋盘格内角点数(行列数减1)。 - `--square`:每个方格的实际边长(单位:米)[^3]。 #### **5. 数据采集** - 在交互界面中移动标定板,覆盖不同角度(X/Y轴平移、倾斜、距离变化)。 - 当界面提示“**CALIBRATE**”按钮可用时,点击开始计算参数。 #### **6. 保存标定结果** - 标定完成后点击“**SAVE**”,参数文件将默认保存到`~/.ros/camera_info/`目录,文件名为`camera.yaml`。 - 验证时,可在RViz2中订阅`/image_rect`话题查看去畸变后的图像。 --- ### **参数文件解析** 生成的`camera.yaml`包含以下关键参数: ```yaml image_width: 640 image_height: 480 camera_name: camera camera_matrix: rows: 3 cols: 3 data: [fx, 0, cx, 0, fy, cy, 0, 0, 1] distortion_coefficients: rows: 1 cols: 5 data: [k1, k2, p1, p2, k3] ``` - `fx/fy`:焦距像素值 - `cx/cy`:光心坐标 - `k1~k3`:径向畸变系数 - `p1~p2`:切向畸变系数[^1] --- ### **常见问题** 1. **标定板检测失败** - 检查标定板尺寸参数是否匹配打印的实际尺寸。 - 确保摄像头对焦清晰,光照均匀。 2. **标定误差较大** - 采集数据时需覆盖不同视角,建议至少采集50组有效数据。 - 增加棋盘格移动范围(尤其是深度方向)。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞同学

随时为您服务

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值