过程: 点云降噪->点云运动补偿(去畸变)->点云转换到全局坐标系G->利用地图组成的KD-tree搜索最近点->计算残差(残差应该是0)
点云预处理
激光雷达测量的数据是其自身坐标系中点坐标。由于原始激光雷达点采样频率是非常高的(例如,200kHZ),因此,通常不可能在每次接收到新的点后都对其进行处理。一种更实用的方法是将这些点累计一段时间,然后一次处理所有这些点。在FAST-LIO中,最小累积间隔设置为20ms,这使得状态估计(LIO里程计输出)与地图更新频率最高可达50hz
点云运动畸变与向后传播
核心是时间软同步的问题,点云是在各自不同的实践内采集的,坐标系不相同,所以需要IMU预测的位姿向后传播去除运动畸变。IMU和激光雷达的时间不可能完全对比,相差在几个ms。激光雷达一帧数据由很多点组成,这些点显然不是同一时间测量得到的,所以需要补偿时间差带来的运动误差
IMU预测向后传播去除运动畸变的基本原理是利用IMU的高频数据(如角速度和加速度)来预测LIDAR在扫描过程中的运动状态,然后将预测的运动状态应用于LIDAR点云数据,以去除由于运动产生的畸变。
具体来说,IMU能够实时测量载体的角速度和加速度,这些数据可以用来估算载体的姿态和位置变化。在LIDAR扫描过程中,
从工程角度理解fast-lio2
于 2024-07-29 10:01:33 首次发布