- 卡尔曼滤波器的作用是把多个高斯分布的随机变量合为一个,这些随机变量可以代表不同方式得到的同一个量的概率分布。
- 这些随机变量都是独立。判断独立与否在于,当一个随机变量的值定下来后,另外一个随机变量的概率密度函数是否发生改变。
- 我们的目的不是求这个求高斯分布的随机变量得联合分布,而是想获得一个值,这个值能够使这多个随机变量同时发生的概率最大。
- 求多个随机变量同时发生的概率就是把这些随机变量相乘。然后获得这个合成的随机变量的均值就是我们要求的融合了多个数据的估计值。
- 新的状态的均值和方差就是这个新的随机变量的均值和方差。
- 所以只要能被表示成正态分布,并且相互独立的,无偏的多个估计值就能通过卡尔曼滤波器融合在一起。(无偏的意思是当我们融合了越来越多的数据后,最终得到的那个随机变量的均值等于真值)
- 对于多维的随机变量,每一维都可能使误差下降。所以每次对每一维的更新大小也是根据方差来的,而方差又是用梯度变换来的。也就是数学表达式的关系先以梯度的方式表达,然后在以协方差矩阵方式存储。
- 协方差矩阵非对角元的值代表维度之间的影响,也就是一个维度的梯度不仅影响自己的更新量,也有可能影响其他维度的更新量,比如速度和位置。
- 如果观测数太少,存在多种让误差减小的方式。这中情况和人工神经网络里面的mini-batch其实一样。一次跟新的量不一定按照全局下降的方向来,但是多次更新后,总体能让误差下降。
卡尔曼滤波器的本质理解
最新推荐文章于 2024-10-01 01:15:00 发布