机器学习基础(五十八)—— 香农熵、相对熵(KL散度)与交叉熵

1. 香农熵(Shannon entropy)

信息熵(又叫香农熵)反映了一个系统的无序化(有序化)程度,一个系统越有序,信息熵就越低,反之就越高。

如果一个随机变量 X 的可能取值为 X={x1,x2,,xn},对应的概率为 p(X=xi) ,则随机变量 X 的信息熵为:

H(X)=i=1np(xi)logp(xi)

2. 相对熵(relative entropy)

所谓相对,自然在两个随机变量之间。又称互熵,Kullback–Leibler divergence(K-L 散度)等。设 p(x) q(x) X 取值的两个概率分布,则 p q 的相对熵为:

D(p||q)=i=1np(x)logp(x)q(x)

在一定程度上,熵可以度量两个随机变量的距离。KL 散度是两个概率分布 P 和 Q 差别的非对称性的度量。KL 散度是用来度量使用基于 Q 的编码来编码来自 P 的样本平均所需的额外的位元数。

典型情况下,P 表示数据的真实分布,Q 表示数据的理论分布,模型分布,或 P 的近似分布。

相对熵的性质,相对熵(KL散度)有两个主要的性质。如下

  • (1)尽管 KL 散度从直观上是个度量或距离函数,但它并不是一个真正的度量或者距离,因为它不具有对称性,即

D(p||q)D(q||p)

  • (2)相对熵的值为非负值,即

    D(p||q)0

在证明之前,需要认识一个重要的不等式,叫做吉布斯不等式。内容如下


这里写图片描述

这里提供一个离散型 KL 散度的简单实现:

from functools import reduce
import operator
import math

def kl(p, q):
    return reduce(operator.add, map(lambda x, y: x*math.log(x/y), p, q))

3. 交叉熵(cross entropy)

  • H(p,q)=xp(x)logq(x)
### KL交叉熵损失的区别 #### 定义 在信息论和机器学习领域,熵是衡量不确定性的核心概念。对于离型随机变量 \(X\) ,其概率质量函数为 \(P(x)\),熵定义如下[^2]: \[ H(X) = -\sum_{x \in X} P(x) \log P(x). \] 当涉及到两个概率分布\(P\) 和 \(Q\)时,KL(Kullback-Leibler divergence),也称为相对熵,用于测量这两个分布之间的差异性: \[ D_{KL}(P||Q)=\sum_x{P(x)}\log{\frac{{P(x)}}{{Q(x)}}}. \] 该公式表明了从真实分布 \(P\) 到近似分布 \(Q\) 所需的信息增益。 另一方面,交叉熵则是指使用错误的概率分布来进行编码所需的平均比特数,具体表达式为: \[ H(P,Q)=-\sum_x {P(x)\log Q(x)}. \] 值得注意的是,在某些情况下,交叉熵可视为熵加上KL的结果[^3]. #### 应用场景 在实际的机器学习任务中,这两种量方式有着各自的应用范围: - **交叉熵** 主要应用于监督学习中的分类问题,特别是多类别分类问题。作为一种常用的损失函数,交叉熵能够有效地指导神经网络调整权重参数,从而让预测输出更贴近真实的标签分布。通过最小化交叉熵损失,模型试图使自身的预测分布尽可能逼近数据的真实分布[^1]. - **KL** 更多地出现在无监督学习或者半监督学习框架里,尤其是在变分自编码器(VAEs),生成对抗网络(GANs)以及贝叶斯推理等领域中有广泛运用。它主要用于评估并控制潜在空间内的样本分布特性,确保生成的数据具有良好的统计性质;同时也可用于比较不同模型间的性能优劣,提供了一种定量化的评价标准. 综上所述,尽管两者都基于相同的基础——香农熵的概念展开讨论,但在具体的实现形式及其适用场合方面存在着显著差别。 ```python import numpy as np def kl_divergence(p, q): """Calculate Kullback-Leibler divergence between two distributions.""" p = np.asarray(p) q = np.asarray(q) return np.sum(np.where(p != 0, p * np.log(p / q), 0)) def cross_entropy_loss(y_true, y_pred): """Compute the Cross Entropy Loss given true and predicted probability distribution""" epsilon = 1e-12 y_pred_clipped = np.clip(y_pred, epsilon, 1. - epsilon) ce_loss = -np.sum(y_true * np.log(y_pred_clipped)) return ce_loss ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值