1.摘要
本文提出了一种改进的鲸鱼优化算法(BWOA),该算法融合了Lévy飞行(LF)和混沌局部搜索策略(CLS),旨在增强其在优化任务中的搜索能力。通过引入这两种策略,BWOA能够更有效地平衡全局探索能力与局部搜索能力,从而提升了优化性能。
2.鲸鱼优化算法WOA原理
3.改进策略
L
(
s
,
λ
)
L(s,\lambda)
L(s,λ)表示Lévy飞行:
L
(
s
,
λ
)
=
λ
Γ
(
λ
)
sin
(
π
λ
/
2
)
π
1
s
1
+
λ
,
(
s
≫
s
0
>
0
)
L(s,\lambda)=\frac{\lambda\Gamma(\lambda)\sin(\pi\lambda/2)}\pi\frac1{s^{1+\lambda}},(s\gg s_0>0)
L(s,λ)=πλΓ(λ)sin(πλ/2)s1+λ1,(s≫s0>0)
Lévy 飞行生成随机数应包括两个步骤:随机方向的选择和服从 Lévy 分布的步长的生成。方向服从均匀分布,步长由Mantegna算法给出:
s
=
U
∣
V
∣
1
/
λ
s=\frac U{|V|^{1/\lambda}}
s=∣V∣1/λU
其中,
U
∼
N
(
0
,
σ
2
)
,
V
∼
N
(
0
,
1
)
U\sim N(0,\sigma^2),\quad V\sim N(0,1)
U∼N(0,σ2),V∼N(0,1)。方差表述为:
σ
2
=
[
Γ
(
1
+
λ
)
λ
Γ
(
(
1
+
λ
)
/
2
)
⋅
sin
(
π
λ
/
2
)
2
(
λ
−
1
)
/
2
]
1
/
λ
\sigma^2=[\frac{\Gamma(1+\lambda)}{\lambda\Gamma((1+\lambda)/2)}\cdot\frac{\sin(\pi\lambda/2)}{2^{(\lambda-1)/2}}]^{1/\lambda}
σ2=[λΓ((1+λ)/2)Γ(1+λ)⋅2(λ−1)/2sin(πλ/2)]1/λ
个体位置更新:
X
l
(
t
+
1
)
=
{
X
(
t
+
1
)
+
(
X
∗
(
t
)
−
A
D
)
⋅
l
e
v
y
(
β
)
i
f
p
<
0.5
X
(
t
+
1
)
+
(
D
′
e
b
l
cos
(
2
π
l
)
+
X
∗
(
t
)
)
i
f
p
≥
0.5
X_l(t+1)= \begin{cases} X(t+1)+(X^*(t)-AD)\cdot levy(\beta) & \mathrm{~if~}p<0.5 \\ X(t+1)+\left(D^{\prime}e^{bl}\cos\left(2\pi l\right)+X^*(t)\right) & \mathrm{~if~}p\geq0.5 & & \end{cases}
Xl(t+1)={X(t+1)+(X∗(t)−AD)⋅levy(β)X(t+1)+(D′eblcos(2πl)+X∗(t)) if p<0.5 if p≥0.5
本文通过将混沌局部搜索(CLS)机制引入鲸鱼优化算法(WOA),增强了算法的搜索能力,并有效避免了算法陷入局部最优。采用Logistic混沌函数:
ϑ
k
+
1
=
μ
ϑ
k
(
1
−
ϑ
k
)
\vartheta_{k+1}=\mu\vartheta_k(1-\vartheta_k)
ϑk+1=μϑk(1−ϑk)
混沌局部搜索可以表述为:
X
n
e
w
(
t
)
=
(
1
−
S
)
X
(
t
)
+
S
ϑ
c
X_{new}(t)=(1-S)X(t)+S\vartheta_c
Xnew(t)=(1−S)X(t)+Sϑc
其中,
S
S
S是收缩因子:
S
=
1
−
∣
(
I
−
1
)
/
I
∣
m
\mathrm{S}=1-\left|(\mathrm{I}-1)/\mathrm{I}\right|^m
S=1−∣(I−1)/I∣m
其中,
I
I
I表示迭代次数,
m
m
m控制收缩速度。
流程图
伪代码
4.结果展示
5.参考文献
[1] Chen H, Xu Y, Wang M, et al. A balanced whale optimization algorithm for constrained engineering design problems[J]. Applied Mathematical Modelling, 2019, 71: 45-59.