【论文复现】一种平衡鲸鱼优化算法用于约束工程设计问题


在这里插入图片描述

1.摘要

本文提出了一种改进的鲸鱼优化算法(BWOA),该算法融合了Lévy飞行(LF)和混沌局部搜索策略(CLS),旨在增强其在优化任务中的搜索能力。通过引入这两种策略,BWOA能够更有效地平衡全局探索能力与局部搜索能力,从而提升了优化性能。

2.鲸鱼优化算法WOA原理

SCI二区|鲸鱼优化算法(WOA)原理及实现

3.改进策略

L ( s , λ ) L(s,\lambda) L(s,λ)表示Lévy飞行:
L ( s , λ ) = λ Γ ( λ ) sin ⁡ ( π λ / 2 ) π 1 s 1 + λ , ( s ≫ s 0 > 0 ) L(s,\lambda)=\frac{\lambda\Gamma(\lambda)\sin(\pi\lambda/2)}\pi\frac1{s^{1+\lambda}},(s\gg s_0>0) L(s,λ)=πλΓ(λ)sin(πλ/2)s1+λ1,(ss0>0)
Lévy 飞行生成随机数应包括两个步骤:随机方向的选择和服从 Lévy 分布的步长的生成。方向服从均匀分布,步长由Mantegna算法给出:
s = U ∣ V ∣ 1 / λ s=\frac U{|V|^{1/\lambda}} s=V1/λU
其中, U ∼ N ( 0 , σ 2 ) , V ∼ N ( 0 , 1 ) U\sim N(0,\sigma^2),\quad V\sim N(0,1) UN(0,σ2),VN(0,1)。方差表述为:
σ 2 = [ Γ ( 1 + λ ) λ Γ ( ( 1 + λ ) / 2 ) ⋅ sin ⁡ ( π λ / 2 ) 2 ( λ − 1 ) / 2 ] 1 / λ \sigma^2=[\frac{\Gamma(1+\lambda)}{\lambda\Gamma((1+\lambda)/2)}\cdot\frac{\sin(\pi\lambda/2)}{2^{(\lambda-1)/2}}]^{1/\lambda} σ2=[λΓ((1+λ)/2)Γ(1+λ)2(λ1)/2sin(πλ/2)]1/λ

个体位置更新:
X l ( t + 1 ) = { X ( t + 1 ) + ( X ∗ ( t ) − A D ) ⋅ l e v y ( β )   i f   p < 0.5 X ( t + 1 ) + ( D ′ e b l cos ⁡ ( 2 π l ) + X ∗ ( t ) )   i f   p ≥ 0.5 X_l(t+1)= \begin{cases} X(t+1)+(X^*(t)-AD)\cdot levy(\beta) & \mathrm{~if~}p<0.5 \\ X(t+1)+\left(D^{\prime}e^{bl}\cos\left(2\pi l\right)+X^*(t)\right) & \mathrm{~if~}p\geq0.5 & & \end{cases} Xl(t+1)={X(t+1)+(X(t)AD)levy(β)X(t+1)+(Deblcos(2πl)+X(t)) if p<0.5 if p0.5

本文通过将混沌局部搜索(CLS)机制引入鲸鱼优化算法(WOA),增强了算法的搜索能力,并有效避免了算法陷入局部最优。采用Logistic混沌函数:
ϑ k + 1 = μ ϑ k ( 1 − ϑ k ) \vartheta_{k+1}=\mu\vartheta_k(1-\vartheta_k) ϑk+1=μϑk(1ϑk)

混沌局部搜索可以表述为:
X n e w ( t ) = ( 1 − S ) X ( t ) + S ϑ c X_{new}(t)=(1-S)X(t)+S\vartheta_c Xnew(t)=(1S)X(t)+Sϑc

其中, S S S是收缩因子:
S = 1 − ∣ ( I − 1 ) / I ∣ m \mathrm{S}=1-\left|(\mathrm{I}-1)/\mathrm{I}\right|^m S=1(I1)/Im
其中, I I I表示迭代次数, m m m控制收缩速度。

流程图

在这里插入图片描述
伪代码

在这里插入图片描述

4.结果展示

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.参考文献

[1] Chen H, Xu Y, Wang M, et al. A balanced whale optimization algorithm for constrained engineering design problems[J]. Applied Mathematical Modelling, 2019, 71: 45-59.

6.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值