1.算法原理
SCI二区|鲸鱼优化算法(WOA)原理及实现【附完整Matlab代码】
2.多任务点路径规划模型
基于融合 A*-鲸鱼优化算法生成所有目标点之间的距离矩阵U:
U
=
[
d
1
−
1
d
1
−
2
d
1
−
3
⋯
d
1
−
i
d
2
−
1
d
2
−
2
d
2
−
3
⋯
d
2
−
i
d
3
−
1
d
3
−
2
d
3
−
3
⋯
d
3
−
i
⋮
⋮
⋮
⋱
⋮
d
j
−
1
d
j
−
2
d
j
−
3
⋯
d
j
−
i
]
U=\begin{bmatrix}d_{1-1}&d_{1-2}&d_{1-3}&\cdots&d_{1-i}\\d_{2-1}&d_{2-2}&d_{2-3}&\cdots&d_{2-i}\\d_{3-1}&d_{3-2}&d_{3-3}&\cdots&d_{3-i}\\\vdots&\vdots&\vdots&\ddots&\vdots\\d_{j-1}&d_{j-2}&d_{j-3}&\cdots&d_{j-i}\end{bmatrix}
U=
d1−1d2−1d3−1⋮dj−1d1−2d2−2d3−2⋮dj−2d1−3d2−3d3−3⋮dj−3⋯⋯⋯⋱⋯d1−id2−id3−i⋮dj−i
其中,
d
i
j
d_{ij}
dij为第i个目标点到第j个目标点 A* 算法所规划路径的实际距离。
多目标点路径规划问题可表述为:移动机器人需要遍历n个目标点,且每个目标仅被遍历一次,目的是求一条经过所有目标点的最短路径。
V
=
∑
i
=
1
,
i
=
1
n
x
(
l
i
,
l
j
)
V=\sum_{i=1, i=1}^nx\Big(l_i,l_j\Big)
V=i=1,i=1∑nx(li,lj)