一、说明
中心射影有许多特点,我们这节将展示这些特征,以巩固所建立的概念。
二、射影空间
2.1 射影空间的公理
- 每两个不同的点p和q恰好位于一条直线上。
- 维布伦公理:[2]如果a, b, c, d为不同的点,并且通过ab和cd的直线相交,那么通过ac和bd的直线也相交。
- 任意直线上至少有3个点。
- 平行线在无穷远处相交。
2.1 平行直线在中心射影下可以变成相交直线.

证 如图 1 设 O 是相交平面π与π′外一点, A B C D是平 面 π上平行 四边形, 其一 边 A D 在两平面 交线上, 四边形 A B′C′D是平行四边形 A B C D 在以 O 为中心的中心射影下的像.
如果 A B′C′D 也是平行四边形,则线段 A D , B C, B′C′互相平行且 相等,这样 B C C′B′也是平行四边形,这与 B B′, C C′交于 O 矛盾.
所以必有 A D 与 B′C′相交或 A B′与 D C′相交.这证明了中心射影下平行直线可变成相交直线.进一步讨论可以证明 A D 与 B′C′平 行,而 A B′与 D C′相交.
2.2 中心射影可以把一个平面上的圆变成另一个平面上的 双曲线、椭圆或者抛物线.
设 Γ是平面π上的圆,点 O 是平面π外一点. 过 O 与Γ上所有点的连线构成以 O 为顶点的一个椭圆锥面.椭 圆锥面与平面相交可以得到椭圆,也可以得到双曲线或者抛物线. 例如,不过锥面顶点而平行于锥面的某一条母线的平面与锥面相交得抛物线.变动此平面可得到双曲线或椭圆.
2.3 证明共线性,把相交拉大到无穷远
例 :设过点 S 的三直线分别交直线ξ与η于 A, B, C; A′, B′, C′. O 是直线ξ与η的交点.试证,四点 O , P,Q,R共线。( P = A B′× A′B, Q = A C′× A′C, R = B C′× B′C ) .
思路:观察S点和O点,将S和O向远处移动,命题同样成立。继续向远方移动S和O,移动到无穷远处,则图像如下:
SA//SB//SC三线平行。同样线ABC//A'B'C',即两线也平行,因此,ABC和A'B'C'构成若干个平行四边形。而PQR是这些平行四边形的中心,所以,PQR构成直线,且居于ABC和A'B'C'中间位置。
因此,在射影几何中,将常规顶点挪到无限远处,将相交直线转成平行线,构成等价问题,这是一个重要思路。
三、结论
容易看出,在平面之间的中心射影下,两点之间的距离,两直 线的夹角一般都是要改变的.所以中心投影下等边三角形或直角 三角形的像一般不再是等边三角形或直角三角形.由前面讨论知 道,三角形在中心射影下的像甚至可以不是三角形.例如,三角形 的一个顶点在影消线上.