比较LeNet、AlexNet、VGG和ResNet模型及其优缺点的实际实验。

本文对比分析了四种经典的卷积神经网络——LeNet、AlexNet、VGG和ResNet的架构、优缺点及在实际实验中的表现。实验基于非洲野生动物数据集,发现ResNet在深度和残差学习上的优势,而LeNet和AlexNet在处理复杂图像时可能性能不足。VGG网络加深了模型,但也面临梯度消失问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

一、说明

        卷积神经网络,有很多种类,这不仅仅是各种试验或尝试。而且是已经设计好的网络存在若干不尽人意之处,需要弥补和改进。因此,本文就是记录这些网络的优缺点,从新意上说,本文全无,但是从启发初学者还是有点意义。

 非洲野生动物图像集中的几张图像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值