RL — 强化学习算法概述

本文详细概述了强化学习中的各种算法,包括无模型算法如策略优化、价值学习和策略梯度,以及基于模型的RL方法。介绍了值迭代、策略迭代、Q学习、策略梯度(如REINFORCE、TRPO、PPO)、Actor-Critic算法,并探讨了它们的优缺点和适用场景。此外,还讨论了基于模型的RL,如轨迹优化、蒙特卡洛树搜索和模仿最优控制,以及如何通过模型来提高采样效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、说明

   我们在本系列中研究了许多强化学习 (RL) 算法,例如,用于 MoJoCo 任务的策略梯度方法、用于 Atari 游戏的 DQN 和用于机器人控制的基于模型的 RL。虽然许多算法都是在特定领域引入的,但这种联系只能是遗留的。在本文中,我们将概述这些算法,并讨论它们在选择使用方法时的一般权衡。

二、无模型算法

   RL算法可分为基于模型的算法和无模型算法。在无模型RL中,我们不知道也不想学习系统动力学
在这里插入图片描述

   或者,我们只是不在乎,因为该方法不需要状态转换的知识。我们对行动进行抽样并观察相应的奖励,以优化策略或拟合价值函数。

   无模型RL分为策略优化和价值学习:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值