sklearn 中的 Pipeline 机制

本文探讨了sklearn中的Pipeline机制,强调其在机器学习算法流程中的重要性,提供了一个从加载数据集到构建算法流程的示例。Pipeline允许将特征标准化、降维等步骤与分类器串联,形成流水线式处理。文中通过Pipeline执行流程的分析,展示了如何在训练过程中依次应用StandardScaler、PCA和LogisticRegression,并将其与深度神经网络的多层结构进行了对比。
摘要由CSDN通过智能技术生成
from sklearn.pipeline import Pipeline

管道机制在机器学习算法中得以应用的根源在于,参数集在新数据集(比如测试集)上的重复使用

管道机制实现了对全部步骤的流式化封装和管理(streaming workflows with pipelines)。

注意:管道机制更像是编程技巧的创新,而非算法的创新。

接下来我们以一个具体的例子来演示sklearn库中强大的Pipeline用法:

1. 加载数据集

import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelEncoder

df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/'
                 'breast-cancer-wisconsin/wdbc.data', header=None)
				                 # Breast Cancer Wisconsin dataset

X, y = df.values[:, 2:], df.values[:, 1]
								# y为字符型标签
								# 使用LabelEncoder类将其转换为0开始的数值型
encoder = LabelEncoder()
y = encoder.fit_transform(y)
					>>> encoder.transform(['M', 'B'])
				
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值