Trick 1:权值初始化
weights = np.ones(N)/N
应用场景:
- (1)由一堆 decision stump 构成的 weak classifiers 用于AdaBoost 时的的初始权重分配;
Trick 2:避免分母为零的方法
α=12ln1−ϵϵ
令分母上可能的小量 ϵ=max(ϵ,10−16)
alpha = 1/2*np.log((1-epsilon)/max(epsilon, 1e-16))
weights = np.ones(N)/N
应用场景:
令分母上可能的小量 ϵ=max(ϵ,10−16)
alpha = 1/2*np.log((1-epsilon)/max(epsilon, 1e-16))