矩阵手册 —— 逆与伪逆

博客介绍了伪逆和逆的符号表示,其中b† 表示伪逆,b−1表示逆。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • b 表示伪逆, b1 表示逆;
### EViews 数据分析使用指南 #### 多元线性回归分析概述 多元线性回归是一种统计方法,用于研究多个自变量一个因变量之间的关系。在EViews中进行此类分析可以帮助用户更好地理解和预测经济现象。 #### 软件准备数据导入 确保已安装并熟悉EViews软件的操作环境[^1]。接着,需将待分析的数据集加载到该环境中。这通常涉及从外部文件(如Excel表格)读取数据或将现有数据库连接至EViews平台。 #### 执行多元线性回归 遵循详细的指导手册完成每一步骤,包括但不限于定义模型结构、指定解释变量以及响应变量等设置项。具体而言,在EViews界面里依次点击菜单选项或者直接利用命令行输入相应指令来启动回归过程。 #### 结果解读应用 一旦获得回归输出结果,则应仔细审查各项指标及其意义——比如系数估计值、标准误、t统计量和p值等等;同时也要关注整体拟合优度R²和其他诊断测试的结果。基于这些信息可以进一步探讨各因素间可能存在的因果联系,并据此作出合理的推断或决策建议。 #### 辅助回归方程检验 为了评估是否存在多重共线性的潜在影响,可以通过构建额外的支持性回归表达式来进行验证工作。例如,在Eviews软件命令窗口中键入特定语句以实现此目的[^3]。 ```python # Python代码示例展示如何处理类似任务 import statsmodels.api as sm X = df[['coilfuture', 'dow', 'shindex']] # 自变量矩阵 y = df['target'] # 因变量向量 model = sm.OLS(y, X).fit() # 构建最小二乘法模型对象 print(model.summary()) # 输出回归报告摘要 ``` #### 注意事项 在整个过程中务必重视原始资料的真实性和准确性,因为任何偏差都可能导致错误结论的发生。另外,深入理解各个阶段背后原理有助于提高最终成果质量,而不是仅仅依赖于机械式的操作流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值