独立事件、笛卡尔积与矩阵向量乘法


这里写图片描述

X,Y 为离散型随机变量, X 有 6 种可能的状态(值),Y 有 5 种可能的状态。以上的 P(X,Y)=P(X)P(Y) ,则对应着如下的三种含义:

  • 独立事件的联合概率(joint distribution)
  • 笛卡尔积
  • 矩阵向量乘法: C6×5=A6×1B1×5

1. 笛卡尔积(Cartesian product)

A×B={(a,b)|aAandbB}

笛卡尔积并非是笛卡尔本人发明的数学概念,而是后世数学家在定义两个集合的二元关系时,仿照笛卡尔坐标系(这个是笛卡尔天才的发明),而定义的名字。

换句话说,笛卡尔坐标系其实对应着一种笛卡尔乘积;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值