从线性规划到单纯形法的求解

1. 线性规划的标准问题

首先来看线性规划的标准问题:

mins.t.cTxAx=b,xi0

ARm×n,xRn,cRn ,且要求 Rank(A)=m A 是行满秩矩阵)。

下面是一些基本概念的定义:

B A 中任意非奇异的 m×m 阶子矩阵( |B|0 ),则称 B 为此规划的一个基,令 B=(Pj1,,Pjm) ,下标 {j1,j2,,jm}{1,2,,n} ,对应的记 xB={xj1,xj2,,xjm} 为基变量,其余为非基变量。

令非基变量均为 0,则有:

Bxb=b

一些概念:

  • 基本解: xN=0,xB=B1b (这样记,由基构成的解)
  • 可行解:若最终求得的向量 x 满足约束,Ax=b,x0,这样的解为可行解(或叫容许解);
  • 基本可行解:同时满足基本解,可行解的解,也即 xN=0,xB=B1b0 的为基本可行解;

2. 判别定理

BxB+NxN=bxB=B1bB1NxN

根据 A=(B,N) 的拆分形式,对其做进一步的推导:

x0====cTx(cTB,cTN)(xBxN)cTBxB+cTNxNcTBB1b(cTBB1NcTN)xN

因为 cTBB1 常常出现,又进一步称其为单纯性子。对上式移项调整,进一步可得:

x0+(cTBB1NcTN)xN=cTBB1b,(cTBB1BcTB)xB=0x0+(cTBB1BcTB)xB+(cTBB1NcTN)xN=cTBB1bx0+(cTBB1AcT)x=cTBB1b

B 为线性规划的一个基,若 B1b0,且有 cTBB1AcT0 ,则对应于 B 的基本解式必是线性规划问题的最优解。

  • B1b0 ⇒ 基本可行解;

    • cTBB1AcT0 x0cTBB1b
    • 3. 单纯形表

      单纯形表与基向量 B 有关,

      T(B)=[cTBB1bB1bcTBB1AcTB1A]

      其中:

      • cTBB1b 是标量;
      • cTBB1AcT 是行向量;
      • B1b 是列向量;
      • B1A 是矩阵;
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值