行列式(determinant)的物理意义及性质

1. 物理(几何)意义

detA=output areainput area

首选,矩阵代表的是线性变换(linear transformation)。上式说明一个矩阵的行列式( detA )几何意义上,代表着,变换后的输出区域的面积与变换前的输入区域的面积之比。

考虑一个二维的平面直角坐标系,经过线性变换 A=[2001] ,会将原始的坐标系在 x 轴方向上拉伸两倍,也即 detA=2,输出区域的面积是输入区域面积的 2 倍。

2. 性质

行列式最重要的性质在于:

det(AB)==(detA)(detB)(detB)(detA)=det(BA)

而我们还知道的是,一般情况下, ABBA ,也就是矩阵乘法不满足交互律,而矩阵乘法的行列式满足交换律。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值