LIO-SAM学习(二)——bag(topic)基本信息的查看

本文介绍如何使用ROS工具解读Bag文件中的Topic消息,包括播放Bag文件、获取基本信息、列出所有话题及回放特定Topic数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

本文主要记录lio-sam采用的数据包——bag数据包的topic消息解读

1.bag数据包的解读

执行以下命令

roscore
%%进入数据包路径播放数据包 
rosbag play casual_walk.bag 

在这里插入图片描述`

%% 数据包的基本信息
rosbag info casual_walk.bag 

在这里插入图片描述

%% 查看发布的话题消息
rostopic list 

在这里插入图片描述

%% 播放某一个topic的数据信息,其他消息类似
rostopic echo /imu_raw

在这里插入图片描述

总结

**待办:**以后有机会将详细补充bag数据包消息的解读

<think>好的,用户想了解如何通过LIO-SAM生成EVO兼容的轨迹文件,或者转换现有结果。首先,我需要回忆一下LIO-SAM的输出结构。通常,LIO-SAM会发布里程计话题,比如`/odometry/imu`或者`/lio_sam/mapping/odometry`。EVO评估需要的是时间戳和位姿数据,通常是TUM或者KITTI格式。 首先,用户需要知道如何记录这些话题的数据。可以使用rosbag来录制特定话题,或者用ros订阅话题并将数据实时写入文件。比如,使用`rostopic echo`配合重定向到文件,或者在代码中订阅回调函数来保存数据。 然后,数据格式转换是关键。TUM格式需要每行包含时间戳(秒)、位置(x,y,z)和四元数(qx,qy,qz,qw)。而LIO-SAM的里程计消息是nav_msgs/Odometry类型,里面的pose数据可能已经包含这些信息,但需要注意坐标系的转换,比如从IMU到基座的变换。 另外,可能需要处理时间戳的问题。Odometry消息的时间戳可能来自header.stamp,需要确保正确提取。如果时间戳是整数,可能需要转换为浮点秒数。 还有,用户可能需要编写一个简单的Python脚本来自动化这个过程。比如,读取bag文件中的Odometry消息,提取时间戳和位姿,然后按照EVO的格式写入txt文件。同时,注意单位是否一致,比如位置是否是米制单位。 此外,用户可能会遇到坐标系不一致的问题,比如LIO-SAM的输出是否符合EVO评估的要求,是否需要旋转或平移转换。这部分可能需要查看LIO-SAM的文档或者源码中的坐标系定义。 最后,验证生成的轨迹文件是否正确,可以用EVO的工具进行可视化或评估,比如`evo_traj tum traj.txt -p`来查看轨迹是否连贯,没有跳变。</think>关于LIO-SAM生成EVO兼容轨迹文件的实现方法,可通过以下步骤完成: ### 一、获取原始位姿数据 LIO-SAM默认通过ROS话题`/lio_sam/mapping/odometry`发布优化后的里程计信息[^1],消息类型为`nav_msgs/Odometry`。该消息包含: - 时间戳:header.stamp - 位姿:pose.pose.position(x,y,z) 和 pose.pose.orientation(qx,qy,qz,qw) - 协方差矩阵:pose.covariance ### 、生成EVO兼容格式 #### 方案1:实时数据记录 ```python #!/usr/bin/env python import rospy from nav_msgs.msg import Odometry def odom_callback(msg): timestamp = msg.header.stamp.to_sec() # 转换为浮点秒数 x = msg.pose.pose.position.x y = msg.pose.pose.position.y z = msg.pose.pose.position.z qx = msg.pose.pose.orientation.x qy = msg.pose.pose.orientation.y qz = msg.pose.pose.orientation.z qw = msg.pose.pose.orientation.w with open("traj_tum.txt", "a") as f: f.write(f"{timestamp:.6f} {x} {y} {z} {qx} {qy} {qz} {qw}\n") rospy.init_node('evo_converter') rospy.Subscriber("/lio_sam/mapping/odometry", Odometry, odom_callback) rospy.spin() ``` #### 方案2:ROS bag后处理 ```bash # 转换bag文件为TUM格式 evo_traj bag your.bag --topic /lio_sam/mapping/odometry --save_as_tum ``` ### 三、坐标系对齐验证 需确保LIO-SAM的输出坐标系与真实轨迹坐标系一致。可通过修改LIO-SAM配置文件中`/params.yaml`的坐标系参数: ```yaml # 坐标系设置 frame_id: "map" base_frame: "base_link" odom_frame: "odom" ``` ### 四、评估验证 ```bash # 轨迹可视化 evo_traj tum traj_tum.txt -p --plot_mode=xz # APE计算 evo_ape kitti ground_truth.txt traj_tum.txt -va --plot ``` [^1]: LIO-SAM源码中`run.launch`文件定义了默认的odometry话题名称和坐标系配置
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值