推荐模型-上下文感知-2015:FFM模型【在FM基础上引入特征域】【每个特征对应的不是唯一一个隐向量权重,而是一系列,与每个特征域都计算出一个隐向量权重】【FM:O(kn);FFM:O(knf)】

Yuchin Juan et al. “Field-aware Factorization Machines for CTR Prediction” in RecSys 2016.

https://github.com/rixwew/pytorch-fm

2015年,Criteo基于FM提出的FFM在多项CTR预估大赛中夺魁,并被Criteo、美团等公司深度应用在推荐系统、CTR预估等领域。

FFM算法,全名 Field-aware Factorization Machines ,整整比FM算法多了一个F!多出来的F意为Field

相比FM模型,FFM模型引入了特征域感知(field-aware)这个概念,使模型的表达能力更强了。
在这里插入图片描述
FM、FFM模型只具备二阶特征交叉的能力。Deep Crossing模型可以通过调整神经网络的深度进行特征之间的“深度交叉”,这也 是 Deep Crossing名称的由来。
在这里插入图片描述

(式 2-22 ) 是 FFM的数学形式的二阶部分。其与FM的区别在于隐向量由原 来 的 变 成 了 也 /2 ,这意味着每个特征对应的不是唯一一个隐向量,而是一组 隐向量。当税特征与税特征进行交叉时,税特征会从税的这一组隐向量中挑出与特征税的域心对应的隐向量%后进行交叉。同理,/ 2也会用与税的域方对应的隐向量进行交叉。

这里所说的域( field ) 具体指什么呢?简单地讲,“域”代表特征域,域内 的特征一般是采用one-hot编码形成的一段one-hot特征向量。例如,用户的性别 分为男、女、未知三类,那么对一个女性用户来说,采用one-hot方式编码的特 征向量为[0,1,0],这个三维的特征向量就是一个“性别”特征域。将所有特征域 连接起来,就组成了样本的整体特征向量。

下面介绍Criteo FFM的论文⑹中的一个例子,更具体地说明FFM的特点。 假设在训练推荐模型过程中接收到的训练样本如图2-11所示。
在这里插入图片描述
其中,Publisher、Advertiser、Gender 是三个特征域,ESPN、NIKE、Male 分别是这三个特征域的特征值(还需要转换成one-hot特征)。

如 果 按 照 F M 的原理,特 征 ESPN、NIKE和 M ale都有对应的隐向量 WESPN,WNiKE,WMaie,那么ESPN特征与NIKE特征、ESPN特征与Male特征做交 叉的权重应该是WESPN , WNIKE和WESPN e WMale。其中,ESPN对应的隐向量WESPN在 两次特征交叉过程中是不变的。

而 在 FFM 中,ESPN与 NIKE、ESPN与 M ale交叉特殊的权重分别是 WESPN,A . WNIKE,P 和 WESPN,G • Malpo
细心的读者肯定已经注意到,ESPN在与NIKE和 Male交叉时分别使用了不 同的隐向量WESPN,A和WESPN,G,这 是 由 于 N IK E和 M ale分别在不同的特征域 Advertiser(A)和 Gender(G)导致的。

在 FFM模型的训练过程中,需要学习〃个特征在7个域上的左维隐向量,参 数 数 量 共 九 个 。在训练方面,FFM的二次项并不能像FM那样简化,因此其 复杂度为kn2o 一

相比FM, FFM引入了特征域的概念,为模型引入了更多有价值的信息,使 模型的表达能力更强,但与此同时,FFM的计算复杂度上升到奶2 ,远大于FM的如。在实际工程应用中,需要在模型效果和工程投入之间进行权衡。
在这里插入图片描述

从 POLY2到 FFM的模型演化过程

在这里插入图片描述
在这里插入图片描述




参考资料:
RS笔记:传统推荐模型之FFM (引入特征域的概念) [2015 Criteo]
推荐系统召回四模型之二:沉重的FFM模型
深入FFM原理与实践
FFM模型详解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值