Bert中文分类模型:训练+推理+部署

本文提供BERT中文文本分类模型的训练和推理教程,引用多个资源,包括BERT模型的训练到部署全流程,以及利用TensorRT 8实现的推理加速,将BERT-Large推理延迟降低至1.2毫秒。
摘要由CSDN通过智能技术生成

BERT(Bidirectional Encoder Representation from Transformers)是google-research在2018年10月提出的一种预训练模型,在11种不同NLP测试中创出SOTA表现,成为NLP发展史上里程碑式的模型成就。

本篇文章从实践入手,带领大家进行Bert的中文文本分类模型的训练和推理的使用教程。




参考资料:
bert中文分类模型训练+推理+部署
BERT模型从训练到部署
GitHub:BERT模型从训练到部署全流程
BERT文本分类,代码超基础、超详细解析
让大家久等了,BERT推理加速终于开源了

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值