推荐系统如何从大语言模型中收益:【①一定程度上解决冷启动的问题(训练数据不够时,可以使用LLM,当数据足够时,可以使用现有小模型)】【In-Context-Learning】【有Zeroshot能力】

本文探讨了大语言模型如LLM在推荐系统中的应用,指出它们能提供丰富的语义信号但缺乏协同信号,适合对话式推荐。未经训练的大模型表现不如小模型,但可以通过fine-tuning处理冷启动问题。文章还对未来大模型推荐技术的发展进行了展望。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、LLM,Yet Another Solution to RecSys?

在这里插入图片描述

推荐系统旨在解决信息过载问题来满足用户的个性化需求。

大语言模型凭借其强大的涌现能力在各个应用领域都取得了经验的表现。

大语言模型能够为推荐系统带来充分的语义信号与外部知识;但是缺乏协同信号,推理代价高;

大语言模型更适合对话式的推荐;

传统推荐系统与大模型结合的方式:

  • 传统推荐系统作为BackBone,大模型作为辅助;(更有效)
    • 大模型对用户的理解更到位;
    • 传统推荐系统更多使用用户ID,物品ID作为特征输入,无法捕捉用户的意图;所以大语言模型更适合对话式的推荐;
  • 大模型作为BackBone,传统推荐系统作为plugin;

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、Uncovering ChatGPT’s Capabilities in Recommender Systems

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

不训练大模型的表现

在这里插入图片描述
在这里插入图片描述

训练小模型后的比较结果

在这里插入图片描述
可以看出,大模型如果不经过fine-tuning,效果不如经过数据训练后的小模型;
另一个方面,如果训练数据不足的话,大模型还是可以一定程度解决冷启动问题;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
大模型在不进行任何fine-tuning的情况下,是不具备uers-item的交互信息;
在这里插入图片描述
通过Fine-tuning来让LLM具备某一个domain的结构化推荐知识;

三、大模型推荐技术及展望

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述




大模型与推荐论坛

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值