VLM(Vision-Language Models)技术简介

本文介绍了视觉-语言模型(VLMs)的预训练方法,包括对比式、生成式和对齐式目标函数。VLMs通过大规模无监督学习,减少了对人工标注数据的依赖,实现零样本预测。文中还探讨了典型算法如CLIP、ALIGN等,并讨论了VLM在视觉任务中的迁移学习和知识蒸馏应用,以及未来的研究方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://www.yuque.com/meta95/hmc3l4/pgq9hn6pg5gxvxvh?singleDoc# 《用于视觉任务的VLM技术简介》

说明:本文是《Vision-Language Models for Vision Tasks: A Survey》一文的阅读笔记。

许多视觉识别研究在深度神经网络(DNNs)训练中依赖大量人工标注数据,并且通常为每个单独的视觉识别任务训练一个独立的DNN,这种方式繁琐且耗时。Vision-Language Models的出现为解决这两个挑战带来了希望。通过从互联网上大量的图像-文本对中学习到丰富的视觉-语言关联,就能够在只使用一个单一VLM模型的情况下实现对各种视觉任务的zero-shot预测,并且取得很好的效果。

为什么要用

<think>嗯,用户想了解计算机视觉或机器学习中的VLM类型。首先,我需要明确VLM的全称是什么。VLM通常指Vision-Language Models,即视觉-语言模型。这类模型结合了视觉和文本处理,能够理解图像和语言之间的联系。 接下来,我需要回忆不同类型的VLM。根据结构,可能有单流和双流模型之分。比如,CLIP是双流结构,分别处理图像和文本,再对齐特征;而FLAVA可能是单流,将两种模态输入同一网络。应用方面,VLM可用于图像描述、视觉问答、多模态检索等。另外,还有基于生成式的方法,比如使用Transformer解码器生成文本描述。 然后,要考虑是否有其他可能的VLM分类方式。例如,按训练数据规模分为大规模预训练和小样本学习;或者按任务类型分为生成式和判别式。可能需要查阅相关资料确认这些分类是否准确。 用户提供的引用中,提到HomeRobot的OVMM基准,涉及感知和语言理解,可能与VLM的应用相关,比如开放词汇的物体识别和操作。引用[1]中的MDFL可能与多模态特征学习有关,但不确定是否直接相关。需要确保回答准确,引用相关文献时要正确对应。 还要注意用户可能对具体模型例子感兴趣,比如ALBEF、BLIP、Flamingo等,这些都属于VLM的不同类型。同时,区分模型架构(如基于Transformer)和训练方法(对比学习、生成式预训练)也很重要。 最后,生成相关问题时要覆盖分类、应用、挑战和评估等方面,帮助用户深入理解。确保回答结构清晰,分点明确,符合用户要求的格式。</think>### VLM类型(Vision-Language Models) 视觉-语言模型VLM)通过融合视觉和文本信息实现多模态理解与生成。以下是其主要分类及典型方法: --- #### 1. **按架构分类** - **单流模型(Single-Stream)** 将图像
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值