高等代数(一)-多项式11:对称多项式

本文介绍了对称多项式的基本概念,起源于一元多项式根的研究。对称多项式在多项式根与系数间有特定关系,依赖于根的对称性。通过定义和例子展示了如何构造对称多项式,并证明了任何对称多项式都可以表示为初等对称多项式的多项式,这是对称多项式基本定理。文章还涉及到了多项式的根与判别式、最大公因式等相关问题,以及拉格朗日插值公式的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

§ 11 对称多项式
对称多项式是多元多项式中常见的一种,
本节就来介绍关于对称多项式的基本事实.
对称多项式的来源之一以及它应用的一个重要方面, 是一元多项式根的研究.
因此我们从一元多项式的根与系数的关系开始.

f(x)=xn+a1xn−1+⋯+anf(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}f(x)=xn+a1xn1++an
P[x]P[x]P[x] 中的一个多项式. 如果 f(x)f(x)f(x) 在数域 PPP 中有 nnn 个根
α1,α2,⋯ ,αn\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}α1,α2,,αn, 那么 f(x)f(x)f(x) 就可以分解成
f(x)=(x−α1)(x−α2)⋯(x−αn).f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right) .f(x)=(xα1)(xα2)(xαn).
把 (2) 展开, 与 (1) 比较, 即得根与系数的关系如下:
{ −a1=α1+α2+⋯+αn,a2=α1α2+α1α3+⋯+αn−1αn,⋯⋯⋯⋯⋯(−1)′ai=∑αk1αk2⋯αi, (所有可能的 i 个不同的 αk, 的乘积之和) , ⋯⋯⋯⋯(−1)nan=α1α2⋯αn.\left\{\begin{aligned} -a_{1} & =\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}, \\ a_{2} & =\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\cdots+\alpha_{n-1} \alpha_{n}, \\ & \cdots \cdots \cdots \cdots \cdots \\ (-1)^{\prime} a_{i} & =\sum \alpha_{k_{1}} \alpha_{k_{2}} \cdots \alpha_{i,} \text { (所有可能的 } i \text { 个不同的 } \alpha_{k,} \text { 的乘积之和) , } \\ & \cdots \cdots \cdots \cdots \\ (-1)^{n} a_{n} & =\alpha_{1} \alpha_{2} \cdots \alpha_{n} . \end{aligned}\right. a1a2(1)ai(1)nan=α1+α2++αn,=α1α2+α1α3++αn1αn,⋯⋯⋯⋯⋯=αk1αk2αi, (所有可能的 i 个不同的 αk, 的乘积之和) , ⋯⋯⋯⋯=α1α2αn.
由此看出, 系数是对称地依赖于方程的根的. 换句话说, 以下 nnnnnn
元多项式
{ σ1=x1+x2+⋯+xn,σ2=x1x2+x1x3+⋯+xn−1xn,⋯⋯⋯⋯σn=x1x2⋯xn\left\{\begin{aligned} \sigma_{1}= & x_{1}+x_{2}+\cdots+x_{n}, \\ \sigma_{2}= & x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{n-1} x_{n}, \\ & \cdots \cdots \cdots \cdots \\ \sigma_{n}= & x_{1} x_{2} \cdots x_{n} \end{aligned}\right. σ1=σ2=σn=x1+x2++xn,x1x2+x1x3++xn1xn,⋯⋯⋯⋯x1x2xn
是对称地依赖于文字 x1,x2,⋯ ,xnx_{1}, x_{2}, \cdots, x_{n}x1,x2,,xn 的.
为了一般地引人对称多项式的概念,我们需要把"对称"的意义弄清楚.
定义 11n11 n11n 元多项式 f(x1,x2,⋯ ,xn)f\left(x_{1}, x_{2}, \cdots, x_{n}\right)f(x1,x2,,xn),
如果对于任意的 i,j,1⩽i<j⩽ni, j, 1 \leqslant i<j \leqslant ni,j,1i<jn, 都有
f˙(x˙1,⋯ ,xi,⋯ ,xj,⋯ ,xn)=f˙(x1,⋯ ,xj,⋯ ,xi,⋯ ,xn),\dot{f}\left(\dot{x}_{1}, \cdots, x_{i}, \cdots, x_{j}, \cdots, x_{n}\right)=\dot{f}\left(x_{1}, \cdots, x_{j}, \cdots, x_{i}, \cdots, x_{n}\right),f˙(x˙1,,xi,,xj,,xn)=f˙(x1,,xj,,xi,,xn),
那么这个多项式称为对称多项式.
这就是说, 如果任意对换两个文字的地位,
f(x1,x2,⋯ ,xn)f\left(x_{1}, x_{2}, \cdots, x_{n}\right)f(x1,x2,,xn) 恒不变,
它就是一个对称多项式.
例如
f(x1,x2,x3)=x12x2+x22x1+x12x3+x32x1+x22x3+x32x2f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+x_{3}^{2} x_{1}+x_{2}^{2} x_{3}+x_{3}^{2} x_{2}f(x1,x2,x3)=x12x2+x22x1+x12x3+x32x1+x22x3+x32x2
就是一个三元对称多项式.
当然, (4) 中的 σ1,σ2,⋯ ,σn\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}σ1,σ2,,σn 都是 nnn
元对称多项式,它们称为初等对称多项式.
由对称多项式的定义可知,
对称多项式的和、积以及对称多项式的多项式还是对称多项式.后一论断是说,
如果
f1(x1,x2,⋯ ,xn),f2(x1,x2,⋯ ,xn),⋯ ,fm(x1,x2,⋯ ,xn)f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right), f_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right), \cdots, f_{m}\left(x_{1}, x_{2}, \cdots, x_{n}\right)f1(x1,x2,,xn),f2(x1,x2,,xn),,fm(x1,x2,,xn)
nnn 元对称多项式,而 g(y1,y2,⋯ ,ym)g\left(y_{1}, y_{2}, \cdots, y_{m}\right)g(y1,y2,,ym)
是任一多项式,那么
g(f1,f2,⋯ ,fm)=h(x1,x2,⋯ ,xn)g\left(f_{1}, f_{2}, \cdots, f_{m}\right)=h\left(x_{1}, x_{2}, \cdots, x_{n}\right)g(f1,f2,,fm)=h(x1,x2,,xn)
nnn 元对称多项式.
特别地,初等对称多项式的多项式还是对称多项式.
关于对称多项式的基本事实就是,任一对称多项式都能表成初等对称多项式的多项式,即
定理 15 对于任意一个 nnn 元对称多项式
f(x1,x2,⋯ ,xn)f\left(x_{1}, x_{2}, \cdots, x_{n}\right)f(x1,x2,,xn) 都有一个 nnn 元多项式
φ(y1,y2,⋯ ,yn)\varphi\left(y_{1}, y_{2}, \cdots, y_{n}\right)φ(y1,y2,,yn), 使得
f(x1,x2,⋯ ,xn)=φ(σ1,σ2,⋯ ,σn).f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\varphi\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right) .f(x1,x2,,xn)=φ(σ1,σ2,,σn).
证明 设对称多项式 f(x1,x2,⋯ ,xn)f\left(x_{1}, x_{2}, \cdots, x_{n}\right)f(x1,x2,,xn) 的首项
(按字典排列法) 为
ax1l1x2l2⋯xnln,a≠0.a x_{1}^{l_{1}} x_{2}^{l_{2}} \cdots x_{n}^{l_{n}}, \quad a \neq 0 .ax1l1x2l2xnln,a=0.
我们指出, (5) 作为对称多项式的首项, 必有
l1⩾l2⩾⋯⩾ln⩾0. l_{1} \geqslant l_{2} \geqslant \cdots \geqslant l_{n} \geqslant 0 \text {. }l1l2ln0
否则, 设有
li<li+1,l_{i}<l_{i+1},li<li+1,
由于 f(x1,x2,⋯ ,xn)f\left(x_{1}, x_{2}, \cdots, x_{n}\right)f(x1,x2,,xn) 是对称的, 所以
f(x1,x2,⋯ ,xn)f\left(x_{1}, x_{2}, \cdots, x_{n}\right)f(x1,x2,,xn) 在包含 (5) 的同时必包含
ax1t1⋯xiti+1xi+1l1⋯xnln,a x_{1}^{t_{1}} \cdots x_{i}^{t_{i+1}} x_{i+1}^{l_{1}} \cdots x_{n}^{l_{n}},ax1t1xiti+1xi+1l1xnln,
这一项就应该先于 (5), 与首项的要求不符.
作对称多项式
φ1=aσ1l1−l2σ2l2−l3⋯σnln.\varphi_{1}=a \sigma_{1}^{l_{1}-l_{2}} \sigma_{2}^{l_{2}-l_{3}} \cdots \sigma_{n}^{l_{n}} .φ1=aσ1l1l2σ2l2l3σnln.
因为 σ1,σ2,⋯ ,σn\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}σ1,σ2,,σn 的首项分别是
x1,x1x2,⋯ ,x1x2⋯xnx_{1}, x_{1} x_{2}, \cdots, x_{1} x_{2} \cdots x_{n}x1,x1x2,,x1x2xn

《二元齐次对称多项式与二项式定理》推广了二项式定理,建立了由二项式定理的无穷多个等价公式构成的集合B,给出了它们在多方面的应用,获得了数以百计的新的数学公式。 在微分学上,我们作了与前面完全平行的工作,即推广了莱布尼兹定理(公式);建立了由莱布尼兹定理(公式)的全体等价公式构成的无穷集合L。集合B与集合L间存在对应关系。给出了莱布尼兹定理(公式)的等价公式的些有趣的应用。 《二元齐次对称多项式与二项式定理》的内容简介如下: 十七世纪著名的英国天才数学家、物理学家、力学家、天文学家牛顿(Newton,1642—1727)于1676年发现:任意个二项式的任意次方幂的展开式的系数全是组合数,即(公式)(请参照书本) 这就是著名的牛顿二项式定理。其中a是实数,(公式)(请参照书本)。其后300多年来未见二项式定理有什么值得称道的新发展;然而科学实验、生产实践的发展却从不停滞,客观现实也都希望二项式定理能发挥更大的作用,但现状总难于改观。 为使二项式定理系列能涵盖更多的内容,扩大其使用的范围,笔者独辟蹊径,从对称多项式基本定理出发,由考虑二元齐次对称多项式与二项式定理间的关系入手,取得了可喜的进展。 众所周知,二元齐次对称多项式般形式为:(公式)(请参照书本)。 二元齐次对称多项式的全体构成的无穷集合为(公式)(请参照书本)。 将S中的每个多项式的初等表达式都写出后,便得到无穷多个恒等式,这无穷多个恒等式构成的集合记作B,即(公式)(请参照书本)。 我们要指出下面的结论: (1)已经将二项式定理推广成非常般的形式; (2)集合B是由二项式定理和它的全部等价公式所构成的个无穷集合; (3)无穷集合s与B的元素之间存在对应关系; (4)集合S、B的元素是完全平等的,无主次之分、无贵贱之别; (5)主要应用:将二项式定理的等价公式应用到算术、代数、三角函数、反三角函数、双曲函数、反双曲函数等方面,不仅能导出数以百计(远多于)的新的数学公式;特别应用到组合计数问题上,彻底地将历史遗留下来的解的大量不合情理的、不可理喻的表达形式,作了“根除术”后,恢复了本来面目。 由于微分学上的莱布尼兹(Leibniz,1646—1716)公式(定理)的展开式的系数与代数学上的二项式定理(公式)的展开式的相应系数完全致,这又诱导我们在微分学上做了与代数学上完全平行的工作。即推广了莱布尼兹定理,建立了由莱布尼兹公式及它的无穷多个等价公式所构成的个无穷集合:(公式)(请参照书本)。 莱布尼兹定理的等价公式也有多方面的应用,在此我们仅指出:将它们应用到某些不定积分的计算上,能将求不定积分的运算转化成求导的运算,这是件令人难以置信的事。 考虑到《二元齐次对称多项式与二项式定理》的总结与提高,在全书的最后安排了第九章,简单介绍了代数系统——线性空间。线性空间的基本概念,在科技领域内已可以算得上是常识性的内容(概念)了,熟悉这重要而又基本的概念是非常必要的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值