§ 11 对称多项式
对称多项式是多元多项式中常见的一种,
本节就来介绍关于对称多项式的基本事实.
对称多项式的来源之一以及它应用的一个重要方面, 是一元多项式根的研究.
因此我们从一元多项式的根与系数的关系开始.
设
f ( x ) = x n + a 1 x n − 1 + ⋯ + a n f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n} f(x)=xn+a1xn−1+⋯+an
是 P [ x ] P[x] P[x] 中的一个多项式. 如果 f ( x ) f(x) f(x) 在数域 P P P 中有 n n n 个根
α 1 , α 2 , ⋯ , α n \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} α1,α2,⋯,αn, 那么 f ( x ) f(x) f(x) 就可以分解成
f ( x ) = ( x − α 1 ) ( x − α 2 ) ⋯ ( x − α n ) . f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right) . f(x)=(x−α1)(x−α2)⋯(x−αn).
把 (2) 展开, 与 (1) 比较, 即得根与系数的关系如下:
{ − a 1 = α 1 + α 2 + ⋯ + α n , a 2 = α 1 α 2 + α 1 α 3 + ⋯ + α n − 1 α n , ⋯ ⋯ ⋯ ⋯ ⋯ ( − 1 ) ′ a i = ∑ α k 1 α k 2 ⋯ α i , (所有可能的 i 个不同的 α k , 的乘积之和) , ⋯ ⋯ ⋯ ⋯ ( − 1 ) n a n = α 1 α 2 ⋯ α n . \left\{\begin{aligned} -a_{1} & =\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}, \\ a_{2} & =\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\cdots+\alpha_{n-1} \alpha_{n}, \\ & \cdots \cdots \cdots \cdots \cdots \\ (-1)^{\prime} a_{i} & =\sum \alpha_{k_{1}} \alpha_{k_{2}} \cdots \alpha_{i,} \text { (所有可能的 } i \text { 个不同的 } \alpha_{k,} \text { 的乘积之和) , } \\ & \cdots \cdots \cdots \cdots \\ (-1)^{n} a_{n} & =\alpha_{1} \alpha_{2} \cdots \alpha_{n} . \end{aligned}\right. ⎩
⎨
⎧−a1a2(−1)′ai(−1)nan=α1+α2+⋯+αn,=α1α2+α1α3+⋯+αn−1αn,⋯⋯⋯⋯⋯=∑αk1αk2⋯αi, (所有可能的 i 个不同的 αk, 的乘积之和) , ⋯⋯⋯⋯=α1α2⋯αn.
由此看出, 系数是对称地依赖于方程的根的. 换句话说, 以下 n n n 个 n n n
元多项式
{ σ 1 = x 1 + x 2 + ⋯ + x n , σ 2 = x 1 x 2 + x 1 x 3 + ⋯ + x n − 1 x n , ⋯ ⋯ ⋯ ⋯ σ n = x 1 x 2 ⋯ x n \left\{\begin{aligned} \sigma_{1}= & x_{1}+x_{2}+\cdots+x_{n}, \\ \sigma_{2}= & x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{n-1} x_{n}, \\ & \cdots \cdots \cdots \cdots \\ \sigma_{n}= & x_{1} x_{2} \cdots x_{n} \end{aligned}\right. ⎩
⎨
⎧σ1=σ2=σn=x1+x2+⋯+xn,x1x2+x1x3+⋯+xn−1xn,⋯⋯⋯⋯x1x2⋯xn
是对称地依赖于文字 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 的.
为了一般地引人对称多项式的概念,我们需要把"对称"的意义弄清楚.
定义 11 n 11 n 11n 元多项式 f ( x 1 , x 2 , ⋯ , x n ) f\left(x_{1}, x_{2}, \cdots, x_{n}\right) f(x1,x2,⋯,xn),
如果对于任意的 i , j , 1 ⩽ i < j ⩽ n i, j, 1 \leqslant i<j \leqslant n i,j,1⩽i<j⩽n, 都有
f ˙ ( x ˙ 1 , ⋯ , x i , ⋯ , x j , ⋯ , x n ) = f ˙ ( x 1 , ⋯ , x j , ⋯ , x i , ⋯ , x n ) , \dot{f}\left(\dot{x}_{1}, \cdots, x_{i}, \cdots, x_{j}, \cdots, x_{n}\right)=\dot{f}\left(x_{1}, \cdots, x_{j}, \cdots, x_{i}, \cdots, x_{n}\right), f˙(x˙1,⋯,xi,⋯,xj,⋯,xn)=f˙(x1,⋯,xj,⋯,xi,⋯,xn),
那么这个多项式称为对称多项式.
这就是说, 如果任意对换两个文字的地位,
f ( x 1 , x 2 , ⋯ , x n ) f\left(x_{1}, x_{2}, \cdots, x_{n}\right) f(x1,x2,⋯,xn) 恒不变,
它就是一个对称多项式.
例如
f ( x 1 , x 2 , x 3 ) = x 1 2 x 2 + x 2 2 x 1 + x 1 2 x 3 + x 3 2 x 1 + x 2 2 x 3 + x 3 2 x 2 f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+x_{3}^{2} x_{1}+x_{2}^{2} x_{3}+x_{3}^{2} x_{2} f(x1,x2,x3)=x12x2+x22x1+x12x3+x32x1+x22x3+x32x2
就是一个三元对称多项式.
当然, (4) 中的 σ 1 , σ 2 , ⋯ , σ n \sigma_{1}, \sigma_{2}, \cdots, \sigma_{n} σ1,σ2,⋯,σn 都是 n n n
元对称多项式,它们称为初等对称多项式.
由对称多项式的定义可知,
对称多项式的和、积以及对称多项式的多项式还是对称多项式.后一论断是说,
如果
f 1 ( x 1 , x 2 , ⋯ , x n ) , f 2 ( x 1 , x 2 , ⋯ , x n ) , ⋯ , f m ( x 1 , x 2 , ⋯ , x n ) f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right), f_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right), \cdots, f_{m}\left(x_{1}, x_{2}, \cdots, x_{n}\right) f1(x1,x2,⋯,xn),f2(x1,x2,⋯,xn),⋯,fm(x1,x2,⋯,xn)是
n n n 元对称多项式,而 g ( y 1 , y 2 , ⋯ , y m ) g\left(y_{1}, y_{2}, \cdots, y_{m}\right) g(y1,y2,⋯,ym)
是任一多项式,那么
g ( f 1 , f 2 , ⋯ , f m ) = h ( x 1 , x 2 , ⋯ , x n ) g\left(f_{1}, f_{2}, \cdots, f_{m}\right)=h\left(x_{1}, x_{2}, \cdots, x_{n}\right) g(f1,f2,⋯,fm)=h(x1,x2,⋯,xn)
是 n n n 元对称多项式.
特别地,初等对称多项式的多项式还是对称多项式.
关于对称多项式的基本事实就是,任一对称多项式都能表成初等对称多项式的多项式,即
定理 15 对于任意一个 n n n 元对称多项式
f ( x 1 , x 2 , ⋯ , x n ) f\left(x_{1}, x_{2}, \cdots, x_{n}\right) f(x1,x2,⋯,xn) 都有一个 n n n 元多项式
φ ( y 1 , y 2 , ⋯ , y n ) \varphi\left(y_{1}, y_{2}, \cdots, y_{n}\right) φ(y1,y2,⋯,yn), 使得
f ( x 1 , x 2 , ⋯ , x n ) = φ ( σ 1 , σ 2 , ⋯ , σ n ) . f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\varphi\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right) . f(x1,x2,⋯,xn)=φ(σ1,σ2,⋯,σn).
证明 设对称多项式 f ( x 1 , x 2 , ⋯ , x n ) f\left(x_{1}, x_{2}, \cdots, x_{n}\right) f(x1,x2,⋯,xn) 的首项
(按字典排列法) 为
a x 1 l 1 x 2 l 2 ⋯ x n l n , a ≠ 0. a x_{1}^{l_{1}} x_{2}^{l_{2}} \cdots x_{n}^{l_{n}}, \quad a \neq 0 . ax1l1x2l2⋯xnln,a=0.
我们指出, (5) 作为对称多项式的首项, 必有
l 1 ⩾ l 2 ⩾ ⋯ ⩾ l n ⩾ 0 . l_{1} \geqslant l_{2} \geqslant \cdots \geqslant l_{n} \geqslant 0 \text {. } l1⩾l2⩾⋯⩾ln⩾0.
否则, 设有
l i < l i + 1 , l_{i}<l_{i+1}, li<li+1,
由于 f ( x 1 , x 2 , ⋯ , x n ) f\left(x_{1}, x_{2}, \cdots, x_{n}\right) f(x1,x2,⋯,xn) 是对称的, 所以
f ( x 1 , x 2 , ⋯ , x n ) f\left(x_{1}, x_{2}, \cdots, x_{n}\right) f(x1,x2,⋯,xn) 在包含 (5) 的同时必包含
a x 1 t 1 ⋯ x i t i + 1 x i + 1 l 1 ⋯ x n l n , a x_{1}^{t_{1}} \cdots x_{i}^{t_{i+1}} x_{i+1}^{l_{1}} \cdots x_{n}^{l_{n}}, ax1t1⋯xiti+1xi+1l1⋯xnln,
这一项就应该先于 (5), 与首项的要求不符.
作对称多项式
φ 1 = a σ 1 l 1 − l 2 σ 2 l 2 − l 3 ⋯ σ n l n . \varphi_{1}=a \sigma_{1}^{l_{1}-l_{2}} \sigma_{2}^{l_{2}-l_{3}} \cdots \sigma_{n}^{l_{n}} . φ1=aσ1l1−l2σ2l2−l3⋯σnln.
因为 σ 1 , σ 2 , ⋯ , σ n \sigma_{1}, \sigma_{2}, \cdots, \sigma_{n} σ1,σ2,⋯,σn 的首项分别是
x 1 , x 1 x 2 , ⋯ , x 1 x 2 ⋯ x n x_{1}, x_{1} x_{2}, \cdots, x_{1} x_{2} \cdots x_{n} x1,x1x2,⋯,x1x2⋯xn,于是 (6)
在展开之后, 首项为
a x 1 t 1 − t 2 ( x 1 x 2 ) t 2 − t 3 ⋯ ( x 1 x 2 ⋯ x n ) t n = a x 1 t 1 x 2 t 2 ⋯ x n t n . a x_{1}^{t_{1}-t_{2}}\left(x_{1} x_{2}\right)^{t_{2}-t_{3}} \cdots\left(x_{1} x_{2} \cdots x_{n}\right)^{t_{n}}=a x_{1}^{t_{1}} x_{2}^{t_{2}} \cdots x_{n}^{t_{n}} . ax1t1−t