高等代数(二)-行列式05:行列式的计算

本文介绍了如何使用初等行变换将任意阶行列式转化为上三角形行列式,从而简化计算过程。通过引入矩阵和矩阵的初等行变换概念,详细阐述了行列式的计算方法,并给出了具体的计算示例,展示了这种方法在大规模计算时的效率和适用性。
摘要由CSDN通过智能技术生成

§ 5 行列式的计算
下面我们利用行列式的性质给出一个计算行列式的方法.
在 83 我们看到,一个上三角形行列式
∣ a 11 a 12 a 13 ⋯ a 1 n 0 a 22 a 23 ⋯ a 2 n 0 0 a 33 ⋯ a 3 n ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ a n n ∣ \left|\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2 n} \\ 0 & 0 & a_{33} & \cdots & a_{3 n} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a_{n n} \end{array}\right| a11000a12a2200a13a23a330a1na2na3nann
就等于它主对角线上元素的乘积
a 11 a 22 ⋯ a n n . a_{11} a_{22} \cdots a_{n n} . a11a22ann.
这个计算是很简单的.下面我们想办法把任意的 n n n
阶行列式化为上三角形行列式来计算.
为了便于叙述并考虑到以后的应用,我们引进矩阵及矩阵的初等行变换的概念.
定义 5 由 s n s n sn 个数排成的 s s s 行 (横的) n n n 列 (纵的) 的表
( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a s 2 ⋯ a s n ) \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{s 2} & \cdots & a_{s n} \end{array}\right) a11a21an1a12a22as2a1na2nasn
称为一个 s × n s \times n s×n 矩阵.
例如,
( 1 0 1 2 2 − 1 2 1 0 ) \left(\begin{array}{rrrr} 1 & 0 & \frac{1}{2} & 2 \\ -1 & 2 & 1 & 0 \end{array}\right) (110221120)
是一个 2 × 4 2 \times 4 2×4 矩阵,
( 1 1 2 i 0 i 1 3 2 1 ) \left(\begin{array}{lll} 1 & 1 & 2 \mathrm{i} \\ 0 & \mathrm{i} & 1 \\ 3 & 2 & 1 \end{array}\right) 1031i22i11
是一个 3 × 3 3 \times 3 3×3 矩阵.
a i j ( i = 1 , 2 , ⋯   , s , j = 1 , 2 , ⋯   , n ) a_{i j}(i=1,2, \cdots, s, j=1,2, \cdots, n) aij(i=1,2,,s,j=1,2,,n) 称为矩阵 ( 1 ) (1) (1)
( i , j ) (i, j) (i,j) 元素, 简称为元, i i i 称为元素 a i j a_{i j} aij 的行指标, j j j
称为列指标. 当一个矩阵的元素全是某一数域 P P P 中的数时, 它就称为这一数域

  • 24
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值