高等代数(三)-线性方程组04:矩阵的秩

本文详细介绍了矩阵的秩,包括行秩和列秩的定义,并通过实例展示了如何通过行列式和子式来确定矩阵的秩。证明了矩阵的行秩等于列秩,讨论了矩阵秩与线性方程组解的存在性和唯一性的关系。最后,通过平板温度分布问题展示了线性方程组在实际问题中的应用。
摘要由CSDN通过智能技术生成

§ 4 矩阵的秩
在上一节我们定义了向量组的秩. 如果我们把矩阵的每一行看成一个向量,
那么矩阵就可以认为是由这些行向量组成的. 同样,
如果把每一列看成一个向量,那么矩阵也可以认为是由列向量组成的.
定义 15 所谓矩阵的行秩就是指矩阵的行向量组的秩,
矩阵的列秩就是矩阵的列向量组的秩.
例如, 矩阵
A = ( 1 1 3 1 0 2 − 1 4 0 0 0 5 0 0 0 0 ) \boldsymbol{A}=\left(\begin{array}{rrrr} 1 & 1 & 3 & 1 \\ 0 & 2 & -1 & 4 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{array}\right) A= 1000120031001450
的行向量组是
α 1 = ( 1 , 1 , 3 , 1 ) , α 2 = ( 0 , 2 , − 1 , 4 ) , α 3 = ( 0 , 0 , 0 , 5 ) , α 4 = ( 0 , 0 , 0 , 0 ) . \begin{array}{ll} \boldsymbol{\alpha}_{1}=(1,1,3,1), & \boldsymbol{\alpha}_{2}=(0,2,-1,4), \\ \boldsymbol{\alpha}_{3}=(0,0,0,5), & \boldsymbol{\alpha}_{4}=(0,0,0,0) . \end{array} α1=(1,1,3,1),α3=(0,0,0,5),α2=(0,2,1,4),α4=(0,0,0,0).

可以证明, α 1 , α 2 , α 3 \alpha_{1}, \alpha_{2}, \alpha_{3} α1,α2,α3 是向量组
α 1 , α 2 , α 3 , α 4 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4} α1,α2,α3,α4
的一个极大线性无关组.事实上,由
k 1 α 1 + k 2 α 2 + k 3 α 3 = 0 , k_{1} \boldsymbol{\alpha}_{1}+k_{2} \boldsymbol{\alpha}_{2}+k_{3} \boldsymbol{\alpha}_{3}=\mathbf{0}, k1α1+k2α2+k3α3=0,

k 1 ( 1 , 1 , 3 , 1 ) + k 2 ( 0 , 2 , − 1 , 4 ) + k 3 ( 0 , 0 , 0 , 5 ) = ( k 1 , k 1 + 2 k 2 , 3 k 1 − k 2 , k 1 + 4 k 2 + 5 k 3 ) = ( 0 , 0 , 0 , 0 ) , \begin{aligned} & k_{1}(1,1,3,1)+k_{2}(0,2,-1,4)+k_{3}(0,0,0,5) \\ = & \left(k_{1}, k_{1}+2 k_{2}, 3 k_{1}-k_{2}, k_{1}+4 k_{2}+5 k_{3}\right)=(0,0,0,0), \end{aligned} =k1(1,1,3,1)+k2(0,2,1,4)+k3(0,0,0,5)(k1,k1+2k2,3k1k2,k1+4k2+5k3)=(0,0,0,0),
可得 k 1 = k 2 = k 3 = 0 k_{1}=k_{2}=k_{3}=0 k1=k2=k3=0, 这就证明了
α 1 , α 2 , α 3 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} α1,α2,α3
线性无关. 因为 α 4 \boldsymbol{\alpha}_{4} α4 是零向量, 所以把
α 4 \boldsymbol{\alpha}_{4} α4 添进去就线性相关了, 因此, 向量组
α 1 , α 2 , α 3 , α 4 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4} α1,α2,α3,α4
的秩为 3, 也就是说,矩阵 A \boldsymbol{A} A 的行秩为 3.
A \boldsymbol{A} A的列向量组是
β 1 = ( 1 , 0 , 0 , 0 ) , β 2 = ( 1 , 2 , 0 , 0 ) , β 3 = ( 3 , − 1 , 0 , 0 ) , β 4 = ( 1 , 4 , 5 , 0 ) . \begin{array}{ll} \boldsymbol{\beta}_{1}=(1,0,0,0), & \boldsymbol{\beta}_{2}=(1,2,0,0), \\ \boldsymbol{\beta}_{3}=(3,-1,0,0), & \boldsymbol{\beta}_{4}=(1,4,5,0) . \end{array} β1=(1,0,0,0),β3=(3,1,0,0),β2=(1,2,0,0),β4=(1,4,5,0).

用同样的方法可证,
β 1 , β 2 , β 4 \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{4} β1,β2,β4
线性无关, 而
β 3 = 7 2 β 1 − 1 2 β 2 \boldsymbol{\beta}_{3}=\frac{7}{2} \boldsymbol{\beta}_{1}-\frac{1}{2} \boldsymbol{\beta}_{2} β3=27β121β2,
所以把 β 3 \boldsymbol{\beta}_{3} β3 添进去就线性相关了. 因之,
β 1 , β 2 , β 4 \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{4} β1,β2,β4
是向量组
β 1 , β 2 , β 3 , β 4 \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}, \boldsymbol{\beta}_{4} β1,β2,β3,β4
的一个极大线性无关组,于是向量组 β 1 \boldsymbol{\beta}_{1} β1,
β 2 , β 3 , β 4 \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}, \boldsymbol{\beta}_{4} β2,β3,β4
的秩为 3. 换句话说, 矩阵 A \boldsymbol{A} A 的列秩也是 3 .
矩阵的行秩等于列秩, 这一点不是偶然的. 实际上与 A \boldsymbol{A} A 中的一些
“子行列式” 密切相关.我们引人
定义 16 在 s × n s \times n s×n 矩阵 A A A 中任意选定 k k k 行和 k k k 列,
位于这些选定的行和列的交点上的 k 2 k^{2} k2 个元素按原来的次序所组成的 k k k
级行列式, 称为 A \boldsymbol{A} A k k k 阶子式.
在定义中, 当然有 k ⩽ min ⁡ ( s , n ) k \leqslant \min (s, n) kmin(s,n), 这里 min ⁡ ( s , n ) \min (s, n) min(s,n) 表示
s , n s, n s,n 中较小的一个数.
例 1 在矩阵
A = ( 1 1 3 1 0 2 − 1 4 0 0 0 5 0 0 0 0 ) \boldsymbol{A}=\left(\begin{array}{rrrr} 1 & 1 & 3 & 1 \\ 0 & 2 & -1 & 4 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{array}\right) A= 1000120031001450
中,选第 1,3 行和第 3,4 列, 它们交点上的元素所成的 2 阶行列式
∣ 3 1 0 5 ∣ = 15 \left|\begin{array}{ll} 3 & 1 \\ 0 & 5 \end{array}\right|=15 3015 =15
就是一个 2 阶子式. 又如选第 1 , 2 , 3 1,2,3 1,2,3 行和第 1 , 2 , 4 1,2,4 1,2,4 列, 相应的 3
阶子式就是
∣ 1 1 1 0 2 4 0 0 5 ∣ = 10. \left|\begin{array}{lll} 1 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{array}\right|=10 . 100120145 =10.
由于行和列的选法很多, 所以 k k k 阶子式也是很多的.
定义 17 矩阵 A \boldsymbol{A} A 中最高阶非零子式的阶数称为矩阵
A \boldsymbol{A} A 的秩. 当 A \boldsymbol{A} A 为零矩阵时称
A \boldsymbol{A} A的秩为零.
A \boldsymbol{A} A 的秩为 r r r, 则所有 r r r 阶以上的子式 (如果有的话)
全为零, 当然所有 r + 1 r+1 r+1 阶子式 (如果有的话) 为零. 反之, 若
A \boldsymbol{A} A 的所有 r + 1 r+1 r+1 阶子式全为零, 且有一个 r r r
阶子式不为零,由行列式的展开定理, A \boldsymbol{A} A 的所有 r + 2 r+2 r+2 阶子式,
所有 r + 3 r+3 r+3 阶子式 ⋯ ⋯ \cdots \cdots ⋯⋯ 所有 r r r 阶以上的子式
皆为零. 故 A \boldsymbol{A} A 的最高阶非零子式的阶数为 r r r, 即
A \boldsymbol{A} A 的秩为 r r r.
我们来证明本节的主要结果.
定理 4 A 4 \boldsymbol{A} 4A 的秩 = A =\boldsymbol{A} =A 的列秩 = A =\boldsymbol{A} =A
的行秩.
证明 设 A \boldsymbol{A} A 的秩为 r r r, 必有 A \boldsymbol{A} A 的一个 r r r
阶子式不为零, 而所有 r + 1 r+1 r+1 阶子式皆为零.我们只证 r = A r=\boldsymbol{A} r=A
的列秩,而 r = A r=\boldsymbol{A} r=A 的行秩的证明是类似的.

A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a 31 a 32 ⋯ a n n ) , \boldsymbol{A}=\left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{31} & a_{32} & \cdots & a_{n n} \end{array}\right), A= a11a21a31a12a22a32a1na2nann ,
且不妨设前 r r r 列有 r r r 阶子式不为零.
(否则可经过变换列的次序来达到这一点, 前后两个矩阵的列向量组是一样的,
它们有相同的列秩. ) 设 A \boldsymbol{A} A 的一个 r r r 阶非零子式为
d = ∣ a i , 1 a i , 2 ⋯ a i , r a i , 1 a i , 2 ⋯ a i , r ⋮ ⋮ ⋮ a i , 1 a i , 2 ⋯ a i , r ∣ ≠ 0. d=\left|\begin{array}{cccc} a_{i, 1} & a_{i, 2} & \cdots & a_{i, r} \\ a_{i, 1} & a_{i, 2} & \cdots & a_{i, r} \\ \vdots & \vdots & & \vdots \\ a_{i, 1} & a_{i, 2} & \cdots & a_{i, r} \end{array}\right| \neq 0 . d= ai,1ai,1ai,1ai,2ai,2ai,2ai,rai,rai,r =0.
下面来证 A \boldsymbol{A} A 的前 r r r 列是线性无关的,我们先证 d d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值