高等代数(三)-线性方程组07:二元高次方程组

" § 7 二元高次方程组
现在我们利用已经建立起来的线性方程组的理论给出一个解二元高次方程组的一般方法.
为了这个目的,我们先讨论一下两个一元多项式有非常数的公因式的条件.
根据第一章的结果,可以证明:
引理 设
f ( x ) = a 0 x n + a 1 x n − 1 + ⋯ + a n , g ( x ) = b 0 x m + b 1 x m − 1 + ⋯ + b m \begin{array}{l} f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}, \\ g(x)=b_{0} x^{m}+b_{1} x^{m-1}+\cdots+b_{m} \end{array} f(x)=a0xn+a1xn1++an,g(x)=b0xm+b1xm1++bm

是数域 P P P 上的两个非零的多项式, 它们的系数 a 0 , b 0 a_{0}, b_{0} a0,b0 不全为零.
于是 f ( x ) f(x) f(x) g ( x ) g(x) g(x) P [ x ] P[x] P[x] 中有非常数的公因式的充分必要条件是, 在
P [ x ] P[x] P[x] 中存在非零的次数小于 m m m 的多项式 u ( x ) u(x) u(x) 与次数小于 n n n 的多项式
v ( x ) v(x) v(x), 使
u ( x ) f ( x ) = v ( x ) g ( x ) . u(x) f(x)=v(x) g(x) . u(x)f(x)=v(x)g(x).
证明 先证必要性. 如果 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 有非常数的公因式 d ( x ) d(x) d(x), 即
f ( x ) = d ( x ) f 1 ( x ) , g ( x ) = d ( x ) g 1 ( x ) , f(x)=d(x) f_{1}(x), \quad g(x)=d(x) g_{1}(x), f(x)=d(x)f1(x),g(x)=d(x)g1(x),
其中 t i a l ( f 1 ( x ) ) < n , t i a l ( g 1 ( x ) ) < m tial\left(f_{1}(x)\right)<n, tial\left(g_{1}(x)\right)<m tial(f1(x))<n,tial(g1(x))<m,
那么取 u ( x ) = g 1 ( x ) , v ( x ) = f 1 ( x ) u(x)=g_{1}(x), v(x)=f_{1}(x) u(x)=g1(x),v(x)=f1(x), 显然就有
u ( x ) f ( x ) = d ( x ) f 1 ( x ) g 1 ( x ) = v ( x ) g ( x ) . u(x) f(x)=d(x) f_{1}(x) g_{1}(x)=v(x) g(x) . u(x)f(x)=d(x)f1(x)g1(x)=v(x)g(x).
再证充分性. 为了确定起见, 不妨设 a 0 ≠ 0 a_{0} \neq 0 a0=0, 也就是说, f ( x ) f(x) f(x) 是一
n n n 次多项式. 假定有 u ( x ) , v ( x ) u(x), v(x) u(x),v(x) 使
u ( x ) f ( x ) = v ( x ) g ( x ) , u(x) f(x)=v(x) g(x), u(x)f(x)=v(x)g(x),
其中 t i a l ( u ( x ) ) < m , t i a l ( v ( x ) ) < n tial(u(x))<m, tial(v(x))<n tial(u(x))<m,tial(v(x))<n. 令
( f ( x ) , v ( x ) ) = d ( x ) , (f(x), v(x))=d(x), (f(x),v(x))=d(x),
于是
f ( x ) = d ( x ) f 1 ( x ) , v ( x ) = d ( x ) v 1 ( x ) . f(x)=d(x) f_{1}(x), \quad v(x)=d(x) v_{1}(x) . f(x)=d(x)f1(x),v(x)=d(x)v1(x).
代人 (3) 式, 得
d ( x ) u ( x ) f 1 ( x ) = d ( x ) v 1 ( x ) g ( x ) , d(x) u(x) f_{1}(x)=d(x) v_{1}(x) g(x), d(x)u(x)f1(x)=d(x)v1(x)g(x),
消去 d ( x ) d(x) d(x), 有
u ( x ) f 1 ( x ) = v 1 ( x ) g ( x ) . u(x) f_{1}(x)=v_{1}(x) g(x) . u(x)f1(x)=v1(x)g(x).
因为 d ( x ) ∣ v ( x ) d(x) \mid v(x) d(x)v(x), 所以 d ( x ) d(x) d(x) 的次数小于 n n n, 因而 f 1 ( x ) f_{1}(x) f1(x)
的次数大于零. 我们知道 ( f 1 ( x ) \left(f_{1}(x)\right. (f1(x),
v 1 ( x ) ) = 1 1)  \left.v_{1}(x)\right)=1^{\text {1) }} v1(x))=11) , 于是由 (4) , 即
f 1 ( x ) ∣ v 1 ( x ) g ( x ) , f_{1}(x) \mid v_{1}(x) g(x), f1(x)v1(x)g(x),

f 1 ( x ) ∣ g ( x ) . f_{1}(x) \mid g(x) . f1(x)g(x).
这就是说 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 有一非常数的公因式 f 1 ( x ) f_{1}(x) f1(x). I
下面再来把引理中的条件改变一下.令
u ( x ) = u 0 x m − 1 + u 1 x m − 2 + ⋯ + u m − 1 , v ( x ) = v 0 x n − 1 + v 1 x n − 2 + ⋯ + v n − 1 . u(x)=u_{0} x^{m-1}+u_{1} x^{m-2}+\cdots+u_{m-1}, \quad v(x)=v_{0} x^{n-1}+v_{1} x^{n-2}+\cdots+v_{n-1} . u(x)=u0xm1+u1xm2++um1,

  • 22
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值