高等代数(五)-二次型02:标 准 形

本文详细探讨了如何通过非退化的线性替换将任意二次型转化为标准形,即平方和形式。通过归纳法和配方法,证明了在数域上任何二次型都能经过非退化线性替换变成平方和,并给出了具体的转换步骤和矩阵表示。举例展示了如何将二次型转换为标准形,进一步阐述了合同变换和对称矩阵对角化的理论及其应用。
摘要由CSDN通过智能技术生成

§ 2 § 2 §2 标 准 形
现在来讨论用非退化的线性替换化简二次型的问题.
可以认为,二次型中最简单的一种是只包含平方项的二次型
d 1 x 1 2 + d 2 x 2 2 + ⋯ + d n x n 2 .  d_{1} x_{1}^{2}+d_{2} x_{2}^{2}+\cdots+d_{n} x_{n}^{2} \text {. } d1x12+d2x22++dnxn2
这一节的主要结果是
定理 1 数域 P P P 上任意一个二次型都可以经过非退化的线性替换变成平方和
(1)的形式.
证明 下面的证明实际上是一个具体地把二次型化成平方和的方法,
这就是中学里学过的"配方法".
我们对变量的个数 n n n 作归纳法.
对于 n = 1 n=1 n=1, 二次型就是
f ( x 1 ) = a 11 x 1 2 , f\left(x_{1}\right)=a_{11} x_{1}^{2}, f(x1)=a11x12,
这已经是平方和了. 现假定对 n − 1 n-1 n1 元的二次型,定理的结论成立. 再设
f ( x 1 , x 2 , ⋯   , x n ) = ∑ i = 1 n ∑ j = 1 n a i j x i x j , a i j = a j . f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}, \quad a_{i j}=a_{j} . f(x1,x2,,xn)=i=1nj=1naijxixj,aij=aj.
分三种情形来讨论:
1. a i i ( i = 1 , 2 , ⋯   , n ) a_{i i}(i=1,2, \cdots, n) aii(i=1,2,,n) 中至少有一个不为零, 例如
a 1 ∣ ≠ 0 a_{1 \mid} \neq 0 a1=0. 这时
f ( x 1 , x 2 , ⋯   , x n ) = a 11 x i 2 + ∑ j = 2 n a 1 j x 1 x j + ∑ i = 2 n a i 1 x i x i + ∑ i = 2 n ∑ j = 2 n a i j x i x j = a 11 x i 2 + 2 ∑ j = 2 n a 1 j x 1 x j + ∑ i = 2 n ∑ j = 2 n a i j x i x j = a 11 ( x i + ∑ j = 2 n a 11 − 1 a i j x j ) 2 − a 11 − 1 ( ∑ j = 2 n a 1 j x j ) 2 + ∑ i = 2 n ∑ j = 2 n a i j x i x j = a 11 ( x i + ∑ j = 2 n a 11 − 1 a 1 j x j ) 2 + ∑ i = 2 n ∑ j = 2 n b i j x i x j , \begin{aligned} f\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =a_{11} x_{i}^{2}+\sum_{j=2}^{n} a_{1 j} x_{1} x_{j}+\sum_{i=2}^{n} a_{i 1} x_{i} x_{i}+\sum_{i=2}^{n} \sum_{j=2}^{n} a_{i j} x_{i} x_{j} \\ & =a_{11} x_{i}^{2}+2 \sum_{j=2}^{n} a_{1 j} x_{1} x_{j}+\sum_{i=2}^{n} \sum_{j=2}^{n} a_{i j} x_{i} x_{j} \\ & =a_{11}\left(x_{i}+\sum_{j=2}^{n} a_{11}^{-1} a_{i j} x_{j}\right)^{2}-a_{11}^{-1}\left(\sum_{j=2}^{n} a_{1 j} x_{j}\right)^{2}+\sum_{i=2}^{n} \sum_{j=2}^{n} a_{i j} x_{i} x_{j} \\ & =a_{11}\left(x_{i}+\sum_{j=2}^{n} a_{11}^{-1} a_{1 j} x_{j}\right)^{2}+\sum_{i=2}^{n} \sum_{j=2}^{n} b_{i j} x_{i} x_{j}, \end{aligned} f(x1,x2,,xn)=a11xi2+j=2na1jx1xj+i=2nai1xixi+i=2nj=2naijxixj=a11xi2+2j=2na1jx1xj+i=2nj=2naijxixj=a11(xi+j=2na111aijxj)2a111(j=2na1jxj)2+i=2nj=2naijxixj=a11(xi+j=2na111a1jxj)2+i=2nj=2nbijxixj,
其中
∑ i = 2 n ∑ j = 2 n b i j x i x j = − a 11 − 1 ( ∑ j = 2 n a i j x j ) 2 + ∑ i = 2 n ∑ j = 2 n a i j x i x j \sum_{i=2}^{n} \sum_{j=2}^{n} b_{i j} x_{i} x_{j}=-a_{11}^{-1}\left(\sum_{j=2}^{n} a_{i j} x_{j}\right)^{2}+\sum_{i=2}^{n} \sum_{j=2}^{n} a_{i j} x_{i} x_{j} i=2nj=2nbijxixj=a111(j=2naijxj)2+i=2nj=2naijxixj
是一个 x 2 , x 3 , ⋯   , x n x_{2}, x_{3}, \cdots, x_{n} x2,x3,,xn 的二次型. 令
{ y 1 = x 1 + ∑ j = 2 n a 11 − 1 a 1 j x j , y 2 = x 2 , … … … . y n = x n , \left\{\begin{aligned} y_{1} & =x_{1}+\sum_{j=2}^{n} a_{11}^{-1} a_{1 j} x_{j}, \\ y_{2} & =x_{2}, \\ & \ldots \ldots \ldots . \\ y_{n} & =x_{n}, \end{aligned}\right. y1y2yn=x1+j=2na111a1jxj,=x2,……….=xn,

{ x 1 = y 1 − ∑ j = 2 n a 11 − 1 a 1 j y j , x 2 = y 2 , … … … … x n = y n , \left\{\begin{aligned} x_{1} & =y_{1}-\sum_{j=2}^{n} a_{11}^{-1} a_{1 j} y_{j}, \\ x_{2} & =y_{2}, \\ & \ldots \ldots \ldots \ldots \\ x_{n} & =y_{n}, \end{aligned}\right. x1x2xn=y1j=2na111a1jyj,=y2,…………=yn,
这是一个非退化线性替换, 它使
f ( x 1 , x 2 , ⋯   , x n ) = a 11 y 1 2 + ∑ i = 2 n ∑ j = 2 n b i j y i y j . f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=a_{11} y_{1}^{2}+\sum_{i=2}^{n} \sum_{j=2}^{n} b_{i j} y_{i} y_{j} . f(x1,x2,,xn)=a11y12+i=2nj=2nbijyiyj.
由归纳法假定,对 ∑ i = 2 n ∑ j = 2 n b i j y i y j \sum_{i=2}^{n} \sum_{j=2}^{n} b_{i j} y_{i} y_{j} i=2nj=2nbijyiyj
有非退化线性替换
{ z 2 = c 22 y 2 + c 23 y 3 + ⋯ + c 2 n y n , z 3 = c 32 y 2 + c 33 y 3 + ⋯ + c 3 n y n , ⋯ ⋯ ⋯ ⋯ z n = c n 2 y 2 + c n 3 y 3 + ⋯ + c n n y n , \left\{\begin{array}{c} z_{2}=c_{22} y_{2}+c_{23} y_{3}+\cdots+c_{2 n} y_{n}, \\ z_{3}=c_{32} y_{2}+c_{33} y_{3}+\cdots+c_{3 n} y_{n}, \\ \cdots \cdots \cdots \cdots \\ z_{n}=c_{n 2} y_{2}+c_{n 3} y_{3}+\cdots+c_{n n} y_{n}, \end{array}\right. z2=c22y2+c23y3++c2nyn,z3=c32y2+c33y3++c3nyn,⋯⋯⋯⋯zn=cn2

  • 18
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值