高等代数(六)-线性空间03:维数、基与坐标

(2)线性表出,那么称向量组 (1) 可以经向量组 (2) 线性表出.如果 (1) 与 (2)我们知道, 对于几何空间中的向量,线性无关的向量最多是 3 个, 而任意 4。个向量都是线性相关的.在一个线性空间中,究竞最多能有几个线性无关的向量,在解析几何中我们看到, 为了研究向量的性质, 引人坐标是一个重要的步骤.按照这个定义,不难看出, 几何空间中向量所成的线性空间是三维的;,线性相关的充分必要条件是其中有一个向量是其余向量的线性组合.由此推出,两个等价的线性无关的向量组,必定含有相同个数的向量.
摘要由CSDN通过智能技术生成

§ 3 维数 - 基与坐标
定义 2 设 V V V 是数域 P P P 上的一个线性空间,
α 1 , α 2 , ⋯   , α r ( r ⩾ 1 ) \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{r}(r \geqslant 1) α1,α2,,αr(r1)
V V V 中一组向量, k 1 , k 2 , ⋯   , k k_{1}, k_{2}, \cdots, k k1,k2,,k ,是数域 P P P
中的数,那么向量
α = k 1 α 1 + k ˙ 2 α ˙ 2 + ⋯ + k 1 α , \boldsymbol{\alpha}=k_{1} \boldsymbol{\alpha}_{1}+\dot{k}_{2} \dot{\boldsymbol{\alpha}}_{2}+\cdots+k_{1} \boldsymbol{\alpha}, α=k1α1+k˙2α˙2++k1α,
称为向量组 α 1 , α 2 , ⋯   , α \alpha_{1}, \alpha_{2}, \cdots, \boldsymbol{\alpha} α1,α2,,α,
的一个线性组合. 此时我们也说向量 α \boldsymbol{\alpha} α 可以经向量组
α 1 \boldsymbol{\alpha}_{1} α1, α 2 , ⋯   , α , \alpha_{2}, \cdots, \alpha_{,} α2,,α,线性表出.
定义 3 设
α 1 , α 2 , ⋯   , α r ; β 1 , β 2 , ⋯   , β , \begin{array}{c} \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{r} ; \\ \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}, \end{array} α1,α2,,αr;β1,β2,,β,

V V V 中两个向量组.如果 (1) 中每个向量都可以经向量组
(2)线性表出,那么称向量组 (1) 可以经向量组 (2) 线性表出.如果 (1) 与 (2)
可以互相线性表出,那么向量组 (1) 与 (2) 称为等价的.
定义 4 线性空间 V V V 中向量
α 1 , α 2 , ⋯   , α r ( r ⩾ 1 ) \alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}(r \geqslant 1) α1,α2,,αr(r1)
称为线性相关, 如果在数域 P P P 中有 r r r 个不全为零的数
k 1 , k 2 , ⋯   , k r k_{1}, k_{2}, \cdots, k_{r} k1,k2,,kr, 使
i 1 α 1 + k 2 α 2 + ⋯ + k , α r = 0. i_{1} \boldsymbol{\alpha}_{1}+k_{2} \boldsymbol{\alpha}_{2}+\cdots+k_{,} \boldsymbol{\alpha}_{r}=\mathbf{0} . i1α1+k2α2++k,αr=0.
如果向量 α 1 , α 2 , ⋯   , α \alpha_{1}, \alpha_{2}, \cdots, \alpha α1,α2,,α, 不线性相关,
就称为线性无关.换句话说, 向量组
α 1 , α 2 , ⋯   , α \alpha_{1}, \alpha_{2}, \cdots, \alpha α1,α2,,α,称为线性无关,如果等式 (3)
只有在 k 1 = k 2 = ⋯ = k t = 0 k_{1}=k_{2}=\cdots=k_{t}=0 k1=k2==kt=0 时式成立.
以上定义是大家过去已经熟悉的, 它们是逐字逐句地重复了 n n n
元数组相应概念的定义.不仅如此,在第三章中,从这些定义出发对 n n n
元数组所作的那些论证也完全可以搬到数域 P P P
上的抽象的线性空间中来并得出相同的结论.
我们不再重复这些论证,只是把几个常用的结论叙述如下:
1. 单个向量 α \boldsymbol{\alpha} α 是线性相关的充分必要条件是
α = 0 \alpha=0 α=0. 两个以上的向量
α 1 , α 2 , ⋯   , α \alpha_{1}, \alpha_{2}, \cdots, \alpha α1,α2,,α,线性相关的充分必要条件是其中有一个向量是其余向量的线性组合.
2. 如果向量组
α 1 , α 2 , ⋯   , α \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha} α1,α2,,α,
线性无关, 而且可以经
β 1 , β 2 , ⋯   , β \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta} β1,β2,,β,
线性表出, 那么 r ⩽ s r \leqslant s rs.
由此推出,两个等价的线性无关的向量组,必定含有相同个数的向量.
3. 如果向量组
α 1 , α 2 , ⋯   , α \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha} α1,α2,,α,
线性无关, 但向量组
α 1 , α 2 , ⋯   , α , β \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}, \boldsymbol{\beta} α1,α2,,α,β
线性相关, 那么 β \boldsymbol{\beta} β
可以经
α 1 , α 2 , ⋯   , α r \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{r} α1,α2,,αr
线性表出,而且表法是唯一的.
我们知道, 对于几何空间中的向量,线性无关的向量最多是 3 个, 而任意 4
个向量都是线性相关的. 对于 n n n 元数组所成的向量空间,有 n n n
个线性无关的向量, 而任意
n + 1 n+1 n+1个向量都是线性相关的.在一个线性空间中,究竞最多能有几个线性无关的向量,
显然是线性空间的一个重要属性. 我们引人
定义 5 如果在线性空间 V V V 中有 n n n 个线性无关的向量,
但是没有更多数目的线性无关的向量,那么 V V V 就称为 n n n 维的; 如果在 V V V
中可以找到任意多个线性无关的向量,那么 V V V 就称为无限维的.
按照这个定义,不难看出, 几何空间中向量所成的线性空间是三维的; n n n
元数组所成的空间是 n n n 维的;
由所有实系数多项式所成的实线性空间是无限维的, 因为对于任意的 n n n, 都有
n n n 个线性无关的向量
1 , x , ⋯   , x n − 1 . 1, x, \cdots, x^{n-1} . 1,x,,xn1.
无限维空间是一个专门研究的对象, 它与有限维空间有比较大的差别.
但是上面提到的线性表出、线性相关、线性无关等性质, 只要不涉及维数和基,
就对无限维空间成立.在本课程中,我们主要讨论有限维空间.
在解析几何中我们看到, 为了研究向量的性质, 引人坐标是一个重要的步骤.
对于有限维线性空间,坐标同样是一个有力的工具.
定义 6 在 n n n 维线性空间 V V V 中, n n n 个线性无关的向量
ε 1 , ε 2 , ⋯   , ε 0 \varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{0} ε1,ε2,,ε0 称为 V V V
的一组基. 设 α \boldsymbol{\alpha} α V V V 中任二向量, 于是
ε 1 , ε 2 , ⋯   , ε n , α \varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}, \boldsymbol{\alpha} ε1,ε2,,εn,α
线性相关, 因此 α \boldsymbol{\alpha} α 可以经
ε 1 , ε 2 , ⋯   , ε n \varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n} ε1,ε2,,εn 线性表出, 即
α = a 1 ε 1 + a 2 ε 2 + ⋯ + a n ε n , \boldsymbol{\alpha}=a_{1} \varepsilon_{1}+a_{2} \varepsilon_{2}+\cdots+a_{n} \varepsilon_{n}, α=a1ε1+a2ε2++

  • 19
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值