复变函数论1-1-复数6-复数在几何上的应用举例1:曲线的复数方程【①:z平面上以原点为圆心,R为半径的圆周的方程为|z|=R;②:z平面上以z₀为圆心,R为半径的圆周的方程为|z-z₀|=R】

本文通过举例介绍了如何使用复数方程来描述几何形状,如连接两点的线段、直线以及圆周。复数方程揭示了平面图形的特性,例如以原点为中心和以任意点为中心的圆的方程,以及实轴和虚轴的定义。这些例子展示了复数在几何应用中的直观性和实用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面我们举例说明两方面的问题: 怎样用复数所适合的方程 (或不等式)来刻画适合某种几何条件的平面图形, 怎样从复数所适合的方程 (或不等式)来确定平面图形的特征.

例 1.14
连接 z 1 z_{1} z1 z 2 z_{2} z2 两点的线段的参数方程为

z = z 1 + t ( z 2 − z 1 ) ( 0 ⩽ t ⩽ 1 ) . z=z_{1}+t\left(z_{2}-z_{1}\right) \quad(0 \leqslant t \leqslant 1) . z=z1+t(z2z1)(0t1).

z 1 z_{1} z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值