在前一节, 我们已经证明了, 在区域 D D D 内解析的函数具有任何阶的导数. 因此,在区域 D D D 内它的实部 u u u 与虚部 v v v 都有二阶连续偏导数.
现在我们来研究应该如何选择 u u u与 v v v 才能使函数 u + i v u+i v u+iv 在区域 D D D内解析.
设 f ( z ) = u + i v f(z)=u+i v f(z)=u+iv 在区域 D D D 内解析, 则由 C.- R. 方程
得
∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y = − ∂ v ∂ x , ∂ 2 u ∂ x 2 = ∂ 2 v ∂ x ∂ y , ∂ 2 u ∂ y 2 = − ∂ 2 v ∂ y ∂ x