复变函数论3-复变函数的积分4-1:拉普拉斯【拉普拉斯算子:Δ≡∂²/∂x²+∂²/∂y²是一种二阶偏导数运算记号】【f(z)=u+iv在D解析➜u、v在D内满足拉普拉斯方程:Δu=0,Δv=0】

本文探讨了在复变函数理论中,当函数f(z)=u+iv在区域D内解析时,其实部u和虚部v如何满足拉普拉斯方程Δu=0和Δv=0,进而解释了拉普拉斯算子Δ的定义及其在复分析中的作用。
摘要由CSDN通过智能技术生成

在前一节, 我们已经证明了, 在区域 D D D 内解析的函数具有任何阶的导数. 因此,在区域 D D D 内它的实部 u u u 与虚部 v v v 都有二阶连续偏导数.

现在我们来研究应该如何选择 u u u v v v 才能使函数 u + i v u+i v u+iv 在区域 D D D内解析.

f ( z ) = u + i v f(z)=u+i v f(z)=u+iv 在区域 D D D 内解析, 则由 C.- R. 方程

∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y = − ∂ v ∂ x , ∂ 2 u ∂ x 2 = ∂ 2 v ∂ x ∂ y , ∂ 2 u ∂ y 2 = − ∂ 2 v ∂ y ∂ x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值