复变函数论2-解析函数3-初等多值函数3-对数函数2:复对数函数的基本性质【Ln(z₁z₂)=Lnz₁+Lnz₂】【Ln(z₁/z₂)=Lnz₁-Lnz₂】

这篇博客探讨了复变函数论中的对数函数基本性质,如 Ln(z1z2)=Lnz1+Lnz2 和 Ln(z2/z1)=Lnz1-Lnz2。通过指数函数的加法定理,证明了这些性质在复数域中同样适用,并解释了为什么在求 ez1=ez2 的对数解时需要加上2kπi,这与指数函数的虚周期有关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ln ⁡ ( z 1 z 2 ) = Ln ⁡ z 1 + Ln ⁡ z 2 , Ln ⁡ z 1 z 2 = Ln ⁡ z 1 − Ln ⁡ z 2 } ( z 1 , z 2 ≠ 0 , ∞ ) . ( 2.24 ) \left.\begin{array}{l} \operatorname{Ln}\left(z_{1} z_{2}\right)=\operatorname{Ln} z_{1}+\operatorname{Ln} z_{2}, \\[2ex] \operatorname{Ln} \cfrac{z_{1}}{z_{2}}=\operatorname{Ln} z_{1}-\operatorname{Ln} z_{2} \end{array}\right\}\left(z_{1}, z_{2} \neq 0, \infty\right) . \quad\quad(2.24) Ln(z1z2)=Lnz1+Lnz2,Lnz2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值