对 n ⩾ 2 n \geqslant 2 n⩾2 的 n n n 阶微分均称为高阶微分:
d n y d x n = f ( n ) ( x ) \frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}=f^{(n)}(x) dxndny=f(n)(x)
微分的运算-乘法法则: d [ u ( x ) v ( x ) ] = v ( x ) d u ( x ) + u ( x ) d v ( x ) \mathrm{d}[u(x) v(x)]=v(x) \mathrm{d} u(x)+u(x) \mathrm{d} v(x) d[u(x)v(x)]=v(x)du(x)+u(x)dv(x);
一阶微分具有形式不变性, 而对于高阶微分来说已不具备这个性质了.
以二阶微分为例,
- 当 x \color{red}{x} x 为 y = f ( x ) y=f(x) y=f(x) 的 自变量 时,
d 2 y = f ′ ′ ( x ) d x 2 . ( 6 ) \mathrm{d}^{2} y=f^{\prime \prime}(x) \mathrm{d} x^{2} .\quad\quad(6) d2y=f′′(x)dx2.(6) - 当 x \color{red}{x} x 为复合函数 y = f ( x ) , x = φ ( t ) y=f(x), x=\varphi(t) y=f(x),x=φ(t) 的 中间变量 时, y = f ( φ ( t ) ) y=f(\varphi(t)) y=f(φ(t))作为 t \color{red}{t} t 的函数
- y y y 对 t \color{red}{t} t 的一阶微分可以写作
d y = f ′ ( x ) d x = f ′ ( x ) φ ′ ( t ) d t , \mathrm{d} y=f^{\prime}(x) \mathrm{d} x=f^{\prime}(x)\varphi^{\prime}(t) \mathrm{d} t, dy=f′(x)dx=f′(x)φ′(t)dt, - y y y 对
- y y y 对 t \color{red}{t} t 的一阶微分可以写作