数学分析(五)-导数和微分5-微分3-高阶微分2:形式不变性【复合函数的高阶微分“不满足”形式不变性】【u是自变量:d²y=f″(u)du²;u是中间变量:d²y=f″(u)du²+f´(u)d²u】

本文探讨了微分的运算,强调了一阶微分具有形式不变性,但高阶微分如二阶微分在复合函数中不再满足这一性质。通过举例和推导,展示了二阶微分在自变量和中间变量情况下的不同表达,并指出错误的解题方法。
摘要由CSDN通过智能技术生成

n ⩾ 2 n \geqslant 2 n2 n n n 阶微分均称为高阶微分

d n y   d x n = f ( n ) ( x ) \frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}=f^{(n)}(x)  dxndny=f(n)(x)

微分的运算-乘法法则: d [ u ( x ) v ( x ) ] = v ( x ) d u ( x ) + u ( x ) d v ( x ) \mathrm{d}[u(x) v(x)]=v(x) \mathrm{d} u(x)+u(x) \mathrm{d} v(x) d[u(x)v(x)]=v(x)du(x)+u(x)dv(x);


一阶微分具有形式不变性, 而对于高阶微分来说已不具备这个性质了.

以二阶微分为例,

  • x \color{red}{x} x y = f ( x ) y=f(x) y=f(x)自变量 时,
    d 2 y = f ′ ′ ( x ) d x 2 . ( 6 ) \mathrm{d}^{2} y=f^{\prime \prime}(x) \mathrm{d} x^{2} .\quad\quad(6) d2y=f′′(x)dx2.(6)
  • x \color{red}{x} x 为复合函数 y = f ( x ) , x = φ ( t ) y=f(x), x=\varphi(t) y=f(x),x=φ(t)中间变量 时, y = f ( φ ( t ) ) y=f(\varphi(t)) y=f(φ(t))作为 t \color{red}{t} t 的函数
    • y y y t \color{red}{t} t 的一阶微分可以写作
      d y = f ′ ( x ) d x = f ′ ( x ) φ ′ ( t ) d t , \mathrm{d} y=f^{\prime}(x) \mathrm{d} x=f^{\prime}(x)\varphi^{\prime}(t) \mathrm{d} t, dy=f(x)dx=f(x)φ(t)dt,
    • y y y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值