泛函分析基础11-线性算子的谱4:全连续算子的谱论

本文探讨了无限维可分希尔伯特空间上的全连续算子的谱性质,包括自伴全连续算子的谱分解式,并展示了如何通过算子的性质推导其谱的特性。证明了全连续算子的谱包含零点,非零点属于点谱且为实数,还讨论了谱的可数性以及自伴全连续算子的谱分布。
摘要由CSDN通过智能技术生成

在这一节中,我们将研究无限维可分希尔伯特空间 H H H 上的全连续算子 A A A的谱性质并导出:当 A A A 是自伴全连续算子时, A A A 的 谱分解式

由第八章 S \mathrm { S } S 3中的定理1, F ( H ) \mathscr { F } ( H ) F(H) B ( H ) \mathscr { B } ( H ) B(H) 的一个理想.现设 F ∈ Z ( H ) , F \in \mathscr { Z } ( H ) , FZ(H),根据第九章习题17, F ∗ ∈ Z ( H ) F ^ { * } \in \mathscr { Z } ( H ) FZ(H) 并且对 B ( F ) \mathscr { B } ( F ) B(F) 中的任意一组规范正交基 { f 1 , f 2 , ⋯   , f n } \left\{ f _ { 1 } , f _ { 2 } , \cdots , f _ { n } \right\} { f1,f2,,fn} 存在 x 1 , x _ { 1 } , x1, x 2 , ⋯ x n ∈ H , x _ { 2 } , \cdots x _ { n } \in H , x2,xnH, 使得 F x = ∑ j = 1 n f j ⟨ x , x j ⟩ , ∀ x ∈ H , F x = \sum _ { j = 1 } ^ { n } f _ { j } \left\langle x , x _ { j } \right\rangle , \forall x \in H , Fx=j=1nfjx,xj,xH,这里, n = dim ⁡ B ( F ) ; n = \operatorname { d i m } \mathscr { B } ( F ) ; n=dimB(F); 同时由本章 8 8 8 3中的例3可知, F F F 还 是一个全连续算子.设 ∣ e k ∣ \left| e _ { k } \right| ek 为H的一组规范正交基.由于

f m = ∑ k = 1 n ⟨ f m , e k ⟩ e k , m = 1 , 2 , ⋯   , n , f _ { m } = \sum _ { k = 1 } ^ { n } \left\langle f _ { m } , e _ { k } \right\rangle e _ { k } , m = 1 , 2 , \cdots , n , fm=k=1nfm,ekek,m=1,2,,n,

∑ m = 1 ∞ ⟨ F e m , e m ⟩ = ∑ m = 1 ∞ ∑ k = 1 n ⟨ e m , x k ⟩ ⟨ f k , e m ⟩ = ∑ k = 1 n ⟨ f k , x k ⟩ , \sum _ { m = 1 } ^ { \infty } \left\langle F e _ { m } , e _ { m } \right\rangle = \sum _ { m = 1 } ^ { \infty } \sum _ { k = 1 } ^ { n } \left\langle e _ { m } , x _ { k } \right\rangle \left\langle f _ { k } , e _ { m } \right\rangle = \sum _ { k = 1 } ^ { n } \left\langle f _ { k } , x _ { k } \right\rangle , m=1Fem,em=m=1k=1nem,xkfk,em=k=1nfk,xk,

∑ m = 1 ∞ ⟨ F e m , e m ⟩ \sum _ { m = 1 } ^ { \infty } \left\langle F e _ { m } , e _ { m } \right\rangle m=1Fem,em与规范正交基 { e k } \left\{ e _ { k } \right\} { ek}的选取无关.于是我们有下面的定义:

定义1

{ e k } \left\{ e _ { k } \right\} { ek} H H H 的任意一组规范正交基,定义 F ( H ) \mathscr { F } ( H ) F(H) 上 的线性泛函 τ \tau τ τ ( T ) = ∑ k = 1 ∞ ⟨ T e k , e k ⟩ , \tau ( T ) = \sum _ { k = 1 } ^ { \infty } \left\langle T e _ { k } , e _ { k } \right\rangle , τ(T)=k=1Tek,ek,任意 T ∈ F ( H ) . T \in \mathscr { F } ( H ) . TF(H).

显然,当 H = C n , A = ( a i j ) n × 0 H = \mathbf { C } ^ { n } , A = \left( a _ { i j } \right) _ { n \times 0 } H=Cn,A=(aij)n×0 H H H 上的线性算子时, τ ( A ) = ∑ k = 1 n a k k \tau ( A ) = \sum _ { k = 1 } ^ { n } a _ { k k } τ(A)=k=1nakk A A A 的迹.因而当 H H H 是 可分无限维时,我们也称 τ \tau τ F ( H ) \mathscr { F } ( H ) F(H) 上的迹。

定理1

上述的迹 τ \tau τ 具有下列性质:
(1)设 V V V H H H 中的 n n n 维子空间, P P P H H H V V V 的正交投影算子,则 τ ( P ) = n ; \tau ( P ) = n ; τ(P)=n;
(2)设 T ∈ Z ( H ) , B ∈ B ( H ) , T \in \mathscr { Z } ( H ) , B \in \mathscr { B } ( H ) , TZ(H),BB(H), τ ( T B ) = τ ( B T ) . \tau ( T B ) = \tau ( B T ) . τ(TB)=τ(BT).

证明留作习题

S \mathrm { S } S 3例4中, L 2 [ a , b ] L ^ { 2 } [ a , b ] L2[a,b]上一类积分算子是有限秩算子列极限.一般情况如下:

引理1

A A A H H H 上的全连续算子.则对任意 ε > 0 \varepsilon > 0 ε>0 存在 A e ∈ F ( H ) A _ { e } \in \mathscr { F } ( H ) AeF(H) 使得 ∥ A − A e ∥ < ε . \left\| A - A _ { e } \right\| < \varepsilon . AAe<ε.

证明
S S S H H H 中的单位球面.因 A S ‾ \overline { A S } AS H H H中的紧子集且 A S ‾ ⊂ ⋃ y ∈ A S U ( y , ε 2 ) . \overline { A S } \subset \bigcup _ { y \in A S } U \left( y , \frac { \varepsilon } { 2 } \right) . ASyASU(y,2ε).故有 y 1 , y _ { 1 } , y1, y 2 , ⋯ y i ∈ A S ‾ y _ { 2 } , \cdots y _ { i } \in \overline { A S } y2,yiAS 使得 A S ‾ ⊂ ⋃ j = 1 i U ( y j , ε 2 ) . \overline { A S } \subset \bigcup _ { j = 1 } ^ { i } U \left( y _ { j } , \frac { \varepsilon } { 2 } \right) . ASj=1iU(yj,2ε). V = span ⁡ { y 1 , y 2 , ⋯   , y s } V = \operatorname { s p a n } \left\{ y _ { 1 } , y _ { 2 } , \cdots , y _ { s } \right\} V=span{ y1,y2,,ys}并取 V V V 中一组规范正交基 f 1 , f 2 , ⋯   , f m ( m ⩽ s ) . f _ { 1 } , f _ { 2 } , \cdots , f _ { m } ( m \leqslant s ) . f1,f2,,fm(ms). A e x = ∑ j = 1 m f j ⟨ x , A ∗ f j ⟩ , A _ { e } x = \sum _ { j = 1 } ^ { m } f _ { j } \left\langle x , A ^ { * } f _ { j } \right\rangle , Aex=j=1mfjx,Afj,任意 x ∈ H . x \in H . xH. A e ∈ Z ( H ) . A _ { e } \in \mathscr { Z } ( H ) . AeZ(H). 任取 x ∈ S , x \in S , xS, 则有 i i i使得 A x ∈ U ( y j , ε 2 ) . A x \in U \left( y _ { j } , \frac { \varepsilon } { 2 } \right) . AxU(yj,2ε).由于 y i = ∑ j = 1 m f j ⟨ y i , f j ⟩ , y _ { i } = \sum _ { j = 1 } ^ { m } f _ { j } \left\langle y _ { i } , f _ { j } \right\rangle , yi=j=1mfjyi,fj,

A e x − y i = ∑ j = 1 m f j ⟨ A e x − y i , f j ⟩ , ∥ A s x − y i ∥ 2 = ∑ j = 1 m ∣ ⟨ A x − y i , f j ⟩ ∣ 2 ⩽ ∥ A x − y i ∥ 2 < ( ε 2 ) 2 , \begin{aligned} A _ { e } x - y _ { i } = \sum _ { j = 1 } ^ { m } f _ { j } \left\langle A _ { e } x - y _ { i } , f _ { j } \right\rangle , \\ \left\| A _ { s } x - y _ { i } \right\| ^ { 2 } = \sum _ { j = 1 } ^ { m } \left| \left\langle A x - y _ { i } , f _ { j } \right\rangle \right| ^ { 2 } \leqslant \left\| A x - y _ { i } \right\| ^ { 2 } < \left( \frac { \varepsilon } { 2 } \right) ^ { 2 } , \end{aligned} Aexyi=j=1mfjAexyi,fj,Asxyi2=j=1mAxyi,fj2Axyi2<(2ε)2,

从而

∥ A x − A e x ∥ ⩽ ∥ A x − y i ∥ + ∥ y i − A e x ∥ < ε , \left\| A x - A _ { e } x \right\| \leqslant \left\| A x - y _ { i } \right\| + \left\| y _ { i } - A _ { e } x \right\| < \varepsilon , AxAexAxyi+yiAex<ε,

于是 ∥ A − A e ∥ < ε . \left\| A - A _ { e } \right\| < \varepsilon . AAe<ε.

推论1

A A A 是全连续算子, I I I H H H 上 的单位算子,则
(1) R ( I + A ) \mathscr { R } ( I + A ) R(I+A) 闭且 dim ⁡ N ( I + A ) < ∞ , dim ⁡ N ( I + A ∗ ) < ∞ ; \operatorname { d i m } \mathscr { N } ( I + A ) < \infty , \operatorname { d i m } \mathscr { N } \left( I + A ^ { * } \right) < \infty ; dimN(I+A)<,dimN(I+A)<;
(2) N ( I + A ) = { 0 } ⇒ N ( I + A ∗ ) = { 0 } . \mathscr { N } ( I + A ) = \{ 0 \} \Rightarrow \mathscr { N } \left( I + A ^ { * } \right) = \{ 0 \} . N(I+A)={ 0}N(I+A)={ 0}.

证明
T = I + A . T = I + A . T=I+A. 由引理1,存在 F 0 ∈ I ( H ) F _ { 0 } \in \mathscr { I } ( H ) F0I(H)使得 ∥ A − F 0 ∥ < 1. \left\| A - F _ { 0 } \right\| < 1 . AF0<1. 于是由本章第2节的定理1可知, G = I + ( A − F 0 ) G = I + \left( A - F _ { 0 } \right) G=I+(AF0) B ( H ) \mathscr { B } ( H ) B(H) 中可逆.令 F = G − 1 F 0 ∈ I ( H ) . F = G ^ { - 1 } F _ { 0 } \in \mathscr { I } ( H ) .

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
GeoPandas是一个开源的Python库,旨在简化地理空间数据的处理和分析。它结合了Pandas和Shapely的能力,为Python用户提供了一个强大而灵活的工具来处理地理空间数据。以下是关于GeoPandas的详细介绍: 一、GeoPandas的基本概念 1. 定义 GeoPandas是建立在Pandas和Shapely之上的一个Python库,用于处理和分析地理空间数据。 它扩展了Pandas的DataFrame和Series数据结构,允许在其中存储和操作地理空间几何图形。 2. 核心数据结构 GeoDataFrame:GeoPandas的核心数据结构,是Pandas DataFrame的扩展。它包含一个或多个列,其中至少一列是几何列(geometry column),用于存储地理空间几何图形(如点、线、多边形等)。 GeoSeries:GeoPandas中的另一个重要数据结构,类似于Pandas的Series,但用于存储几何图形序列。 二、GeoPandas的功能特性 1. 读取和写入多种地理空间数据格式 GeoPandas支持读取和写入多种常见的地理空间数据格式,包括Shapefile、GeoJSON、PostGIS、KML等。这使得用户可以轻松地从各种数据源中加载地理空间数据,并将处理后的数据保存为所需的格式。 2. 地理空间几何图形的创建、编辑和分析 GeoPandas允许用户创建、编辑和分析地理空间几何图形,包括点、线、多边形等。它提供了丰富的空间操作函数,如缓冲区分析、交集、并集、差集等,使得用户可以方便地进行地理空间数据分析。 3. 数据可视化 GeoPandas内置了数据可视化功能,可以绘制地理空间数据的地图。用户可以使用matplotlib等库来进一步定制地图的样式和布局。 4. 空间连接和空间索引 GeoPandas支持空间连接操作,可以将两个GeoDataFrame按照空间关系(如相交、包含等)进行连接。此外,它还支持空间索引,可以提高地理空间数据查询的效率。
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值