泛函分析基础11-线性算子的谱2:有界线性算子谱的基本性质

无限维空间上有界线性算子的谱已不再限于特征值,情况较有限维情形要复杂得多,但是还是有一些基本性质可以得出.这一节涉及的空间 X X X 均指巴拿赫空间

定理1

T ∈ B ( X ) , ∥ T ∥ < 1 , T \in \mathscr { B } ( X ) , \| T \| < 1 , TB(X),T<1, 1 ∈ ρ ( T ) . 1 \in \rho ( T ) . 1ρ(T). 这时 I − T I - T IT 有定义在全空间上的有界逆算子:

( I − T ) − 1 = ∑ k = 0 ∞ T k = I + T + T 2 + ⋯ + T k + ⋯   , ( I - T ) ^ { - 1 } = \sum _ { k = 0 } ^ { \infty } T ^ { k } = I + T + T ^ { 2 } + \cdots + T ^ { k } + \cdots , (IT)1=k=0Tk=I+T+T2++Tk+,

这里的级数按 B ( X ) \mathscr { B } ( X ) B(X) 中范数收敛.

证明
因为 ∥ T 2 ∥ ⩽ ∥ T ∥ 2 , \left\| T ^ { 2 } \right\| \leqslant \| T \| ^ { 2 } , T2 T2, ∥ T n ∥ ⩽ ∥ T ∥ n , \left\| T ^ { n } \right\| \leqslant \| T \| ^ { n } , TnTn, ∥ T ∥ < 1 , \| T \| < 1 , T<1, 必有 ∑ k = 0 ∞ ∥ T ∥ n < \sum _ { k = 0 } ^ { \infty } \| T \| ^ { n } < k=0Tn< ∞ , \infty , , 所以 ∑ k = 0 ∞ ∥ T n ∥ < ∞ , \sum _ { k = 0 } ^ { \infty } \left\| T ^ { n } \right\| < \infty , k=0Tn<, ∑ k = 0 ∞ T n \sum _ { k = 0 } ^ { \infty } T ^ { n } k=0Tn 一 致收敛于某有界算子 S S S (按 B ( X ) \mathscr { B } ( X ) B(X) 中范数收敛).下面验证 S S S 确实是 ( I − T ) ( I - T ) (IT) 的逆算子.

( I − T ) ( I + T + ⋯ + T n ) = ( I + T + T 2 + ⋯ + T n ) − ( T + T 2 + ⋯ + T n + 1 ) = I − T n + 1 . ( I - T ) \left( I + T + \cdots + T ^ { n } \right) = \left( I + T + T ^ { 2 } + \cdots + T ^ { n } \right) - \left( T + T ^ { 2 } + \cdots + T ^ { n + 1 } \right) = I - T ^ { n + 1 } . (IT)(I+T++Tn)=(I+T+T2++Tn)(T+T2++Tn+1)=ITn+1.

n → ∞ , n \rightarrow \infty , n

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值