根据解析函数的孤立奇点特征,便可以区分出两种最简单的解析函数族.
一、整函数
在第三章我们已经定义过, 在整个 z z z 平面上解析的函数 f ( z ) f(z) f(z) 称为整函数.
设 f ( z ) f(z) f(z) 为一整函数, 则 f ( z ) f(z) f(z) 只以 z = ∞ z=\infty z=∞ 为孤立奇点, 且可设
f ( z ) = ∑ n = 0 c n z n ( 0 ⩽ ∣ z ∣ < + ∞ ) . ( 5.14 ) f(z)=\sum_{n=0} c_{n} z^{n} \quad(0 \leqslant|z|<+\infty) . \quad\quad(5.14) f(z)=