复变函数论5-4-整函数与亚纯函数的概念1-整函数2:若f(z)为一整函数,则z=∞为f(z)的可去奇点的充要条件为f(z)=常数

本文探讨了复变函数论中的整函数概念,特别是整函数在无穷远点的奇点性质。定理5.10指出,如果f(z)是一个整函数,那么z=∞是f(z)的可去奇点当且仅当f(z)等于常数。此外,文章还阐述了z=∞作为极点和本质奇点的情况,将整函数分为三类,并给出了超越整函数的例子。
摘要由CSDN通过智能技术生成

根据解析函数的孤立奇点特征,便可以区分出两种最简单的解析函数族.

一、整函数

在第三章我们已经定义过, 在整个 z z z 平面上解析的函数 f ( z ) f(z) f(z) 称为整函数.

f ( z ) f(z) f(z) 为一整函数, 则 f ( z ) f(z) f(z) 只以 z = ∞ z=\infty z= 为孤立奇点, 且可设

f ( z ) = ∑ n = 0 c n z n ( 0 ⩽ ∣ z ∣ < + ∞ ) . ( 5.14 ) f(z)=\sum_{n=0} c_{n} z^{n} \quad(0 \leqslant|z|<+\infty) . \quad\quad(5.14) f(z)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值