ros 栅格地图保存与发布

序言

书接上文(哈哈哈,已经过了好久才又继续做这个,一会贴个上文链接)

ros pcd 地图转栅格地图

保存栅格地图

通过map server来保存地图
两个需要注意的参数
map:=后面放ros中topic的名字,在octomap生成的栅格地图就叫/projected_map
-f 后面接的是保存成的yaml和pgm文件名字与地址

rosrun map_server map_saver map:=/projected_map -f map

发布栅格地图

rosrun map_server map_server map.yaml /map:=/gobal_map

依然是map server
/map:=/gobal_map 是话题重映射,你们可加可不加,我是因为**/map**话题本身已经发布了,所以换个名字

同时需要注意,map server 发布的地图的frame id是map

frame id是map!!!

这很重要

注意事项

注意,使用octomap保存的地图,有可能会出现

MongoDB_"Error parsing YAML config file: yaml-cpp: error at line 3, column34

啥啥啥的问题
解决方案是** line 3, column34**这个位置


注意到原点坐标的z轴坐标是-nan,怎么看都不对劲,所以手动给了0

自动修改frame id

rosrun map_server map_server map.yaml /map:=/gobal_map _frame_id:="/world"

手动修改frame id(懒得删了)

目前还没去看map server 的 frame id 如何设置,所以先手动加个代码修改frame id
(我为什么要修改frame id)因为autoware 的map坐标系是局部地图的cost map,我这里发布的是全局的栅格地图,全局的栅格地图对应的是/points_map的world,所以需要修改frame id为world

import rospy
from  nav_msgs.msg import OccupancyGrid
import time 


class Transfer():
    def __init__(self):
        #初始化节点
        rospy.init_node('transfer_frameid_of_gobal_map')
        self.map_pub = rospy.Publisher('/new_gobal_map', OccupancyGrid, queue_size=100)
        rospy.Subscriber('/gobal_map', OccupancyGrid, self.callback_lidar)

    def callback_lidar(self,data):
        #重设frame_id
        data.header.frame_id="/world"
        self.map_pub.publish(data)

if __name__ == '__main__':
    Transfer()
    rospy.spin()
基于ROS栅格地图的A*算法是一种常用的路径规划算法。在ROS中,栅格地图是通过将连续环境划分为一组离散的栅格单元来表示的。A*算法通过在这些栅格上进行搜索,找到从起始点到目标点的最优路径。 A*算法的基本思路是维护一个开放列表和一个关闭列表,以及每个栅格上的代价函数值。开放列表保存待探索的栅格,关闭列表保存已经考虑过的栅格。算法通过计算每个栅格的估计代价和实际代价之和,来选择下一个探索的栅格。栅格的估计代价可以通过启发式函数来计算,比如欧几里得距离或曼哈顿距离。 具体来说,A*算法可以分为以下几个步骤: 1. 初始化起始点和目标点,并将起始点加入开放列表。 2. 重复以下步骤直到找到目标点或开放列表为空: - 从开放列表中选择估计代价最小的栅格作为当前栅格。 - 将当前栅格从开放列表中移除,并将其加入关闭列表。 - 遍历当前栅格周围的邻居栅格,并计算它们的估计代价和实际代价。 - 如果邻居栅格不在开放列表和关闭列表中,将它们加入开放列表,并更新它们的代价函数值。 - 如果邻居栅格已经在开放列表中,比较新的路径代价和原来的路径代价,并更新为较小的值。 3. 如果找到目标点,根据关闭列表中存储的父节点信息,从目标点回溯到起始点,得到最优路径。 ROS中提供了很多路径规划的工具包,包括nav_core,move_base等,这些包已经实现了基于ROS栅格地图的A*算法,并通过调用相应的API来实现路径规划功能。开发者可以根据具体的应用场景选择适当的路径规划算法进行使用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值